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Ongoing technology improvements and feature size reduction have led to an 

increase in manufacturing-induced parameter variations. These variations affect various 

memory cell circuits, making them unreliable at low voltages. Memories are very dense 

structures that are especially susceptible to defects, and more so at lower voltages. 

Transient errors due to radiation, power supply noise, etc., can also cause bit-flips in a 

memory. To protect the data integrity of the memory, an error correcting code (ECC) is 

generally employed. Present ECC, however, is either single error correcting or corrects 

multiple errors at the cost of high redundancy or longer correction time. 



 ix

This research addresses the problem of memory reliability under adverse 

conditions. The goal is to achieve a desired reliability at reduced redundancy while also 

keeping in check the correction time. Several methods are proposed here including one 

that makes use of leftover spare columns/rows in memory arrays [Datta 09] and another 

one that uses memory characterization tests to customize ECC on a chip by chip basis 

[Datta 10]. The former demonstrates how reusing spare columns leftover from the 

memory repair process can help increase code reliability while keeping hardware 

overhead to a minimum. In the latter case customizing ECCs on a chip by chip basis 

shows considerable reduction in check bit overhead, at the same time providing a desired 

level of protection for low voltage operations. The customization is done with help from 

a defect map generated at manufacturing time, which helps identify potentially vulnerable 

cells at low voltage. 

An ECC based solution for tackling the wear out problem of phase change 

memories (PCM) has also been presented here. To handle the problem of gradual wear 

out and hence increasing defect rates in PCM systems an adaptive error correction 

scheme is proposed [Datta 11a]. The adaptive scheme, implemented alongside the 

operating system seeks to increase PCM lifetime by manifold times. Finally the work on 

memory ECC is extended by proposing a fast burst error correcting code with minimal 

overhead for handling scenarios where multi-bit failures are common [Datta 11b]. The 

twofold goal of this work – design a low-cost code capable of handling multi bit errors 

affecting adjacent cells, and fast multi bit error correction – is achieved by modifying 

conventional Orthogonal Latin Square codes into burst error codes. 
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Chapter 1: Introduction 

Memories are very dense structures that are especially susceptible to defects.  

Transient errors due to radiation, power supply noise, etc., can cause bit-flips in a 

memory. To protect the data integrity of the memory during runtime operations, error 

correcting codes (ECC) of various class and strength is generally employed 

A soft error occurs when a radiation event causes enough of a charge disturbance 

to reverse or flip the data state of a memory cell, register, latch, or flip-flop. The error is 

“soft” because the circuit/device itself is not permanently damaged by the radiation—if 

new data are written to the bit, the device will store it correctly. Recently, research has 

shown that commercial static random access memories (SRAMs) are now so small and 

sufficiently sensitive that single event upsets (SEUs) may be induced from the electronic 

stopping of a proton [Rodebell 07], [Heidel 08], [Sierawski 09], [Lawrence 09]. This 

sensitivity appears near the 65 nm technology node as the critical charge to upset a cell is 

on the order of 1 fC; merely 6,000 electrons are required to cause a change in data state. 

The lower critical charge required to cause a bit-flip has more pronounced effects on 

space applications compared to terrestrial ones [Sierawski 11]. 

Also low voltage operation can lead to greater number of failures, arising due to 

more pronounced effect of process variations. Voltage scaling, which is one of the most 

effective ways to reduce power consumption can lead to unreliable operations at lower 

voltages. Voltage scaling is limited by a minimum value referred to as Vccmin beyond 

which circuits may not function reliably [Taur 98]. Voltage scaling beyond Vccmin gives 

rise to reliability issues, most notably for the memory sub-systems. In order for Vccmin to 

be reduced to enable ultra-low power modes in microprocessors and other circuits, some 

means for handling high memory bit failure rates is required. 
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While soft errors in cache or main memory are primarily corrected using error 

correction codes, some of the newer generations of memory have fundamentally different 

fault models. In this dissertation we have looked at Phase Change Memory (PCM) and 

how the reliability of a PCM based system can be improved. The primary fault model of 

PCM is based on wear out caused by memory writes. Permanent faults present a very 

different kind of challenge compared to soft errors.  

1.1 ERROR CORRECTING CODES 

. The most common error correcting code that is used is single-error-correcting, 

double-error-detecting (SEC-DED) codes [Hamming 50], [Hsiao 70].  These codes can 

correct single bit errors in any word of the memory and can detect double bit errors, have 

moderate redundancy in terms of check bits and are relatively easy to decode. Decoding 

and correction are done via syndrome method which takes single cycle. A special class of 

SEC-DED codes known as Hsiao codes [Hsiao 70] was proposed to improve the speed, 

cost, and reliability of the decoding logic. However some situations demand more 

stringent reliability requirements, thus necessitating error correction stronger than normal 

SEC-DED. 

Stronger error correcting codes includes single byte-error-correcting, double-byte-

error-detecting (SBC-DBD) codes [Berlekamp 68], [Reed 60], [Wolf 69], [Bossen 70] 

[Chen 96]. These codes perform at a higher order Galois field and consequently the 

encoding and decoding are more complex. Moreover, they require more check bits 

thereby increasing the size of the memory. There are also the double-error-correcting 

triple-error-detecting (DEC-TED) codes, which come at the cost of much larger overhead 

in terms of both the check bits and more complex hardware to implement the error 

correction and detection [Lin 83], [Berlekamp 68], [Lala 78]. The general drawbacks 
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with these methods are latency and speed. Most of these codes require several cycles to 

correct the first error unlike the SEC-DED codes. Moreover, the encoding and decoding 

are much more complex and require several table lookups for multiplication in higher 

order fields. However in spite of their low check bits overhead and single cycle decoding, 

SEC-DED codes are not able to provide requisite reliability under certain conditions.  

As an alternative for fast, multiple errors correcting code, we have looked at 

Orthogonal Latin Square (OLS) codes in this dissertation. OLS codes have the ability to 

correct multiple errors in a single cycle which make them very attractive in systems with 

high error rates. In our work we have tried to make OLS codes better suited for 

implementation by optimizing their redundancy through different techniques. 

1.2 ADAPTABLE ERROR CORRECTION CODES 

The most crucial aspect of increasing memory reliability is to do so without 

increasing check bit redundancy too substantially so as to effect normal operation. One 

general approach that has been proposed in [Wilkerson 08], [Chisti 09] is to trade off 

cache capacity to store extra check bit for reliable low voltage operation. The goal is to 

have a stronger but more redundant code to mitigate extra error that may occur in low 

voltage mode. But this can prove to be over compensating at times.  

One limitation of normal SEC-DED codes is that they can only detect, but not 

correct, double-bit errors whereas studies have shown that 1-5% of single event upsets 

(SEUs) can cause multiple-bit errors (MBUs) [Satoh 00], [Makihara 00], [Kawakami 04].  

Also SEC-DED tends to miscorrect triple-bit errors with an alarmingly high probability 

of around 60% or more. 

Some of these problems have been addressed by investigating different techniques 

which increases memory reliability on a need basis. However in order to adapt strength of 
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ECC based on circumstances, additional information is often required. This information 

can be obtained through post-silicon characterization tests or by involving the operation 

system.  

1.3 ORGANIZATION 

Over the course of the next few chapters, we propose four different ideas, all 

focusing on the central issue of making efficient usage of error correction codes. The 

applications range from caches to main memory to PCM based systems. 

In chapter 2 we show how unused spare columns from the memory array can be 

used to improve reliability of the existing ECC. Spare columns are often included in 

memories for the purpose of allowing for repair in the presence of defective cells or bit 

lines. But in many cases, the repair process will not use all spare columns. We propose an 

extremely low cost method to exploit these unused spare columns to improve the 

reliability of the memory by enhancing its existing error correcting code [Datta 09]. 

Memories are generally protected with single-error correcting, double-error-detecting 

(SEC-DED) codes using the minimum number of check bits. In the proposed method, 

unused spare columns are exploited to store additional check bits which can be used to 

reduce the mis-correction probability for triple errors in SEC-DED codes or non-adjacent 

double errors in single adjacent error correcting codes (SEC-DAEC) codes. Our proposed 

has mimimal hardware overhead and the worst case performance is limited by the 

efficiency of the existing code. 

Chapter 3 extends memory error correction to handle multiple soft errors. We 

propose a scheme by which an Orthogonal Latin Square code can be modified to correct 

burst-errors of specific length [Datta 11b]. The method discussed in this work models it 

as a graph coloring problem where the goal is to resolve conflicts in the existing OLS 
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code in order for it to correct burst-errors. Conflicts are resolved by reordering and/or 

reorganizing existing parity relations by inclusion of extra check bits. The graph coloring 

approach tries to minimize the number of additional check bits required. The final OLS 

code after reordering and/or reorganizing would be capable of correcting burst-errors of 

specific length in addition to its original error correction capabilities. 

Chapter 4 introduces a new application for efficient error correcting codes – low 

voltage caches. In this chapter we talk about the idea of implementing a general multi-bit 

error correcting code based on Orthogonal Latin Square codes in on-chip hardware, but 

then selectively, on a chip-by-chip basis, using only a subset of the code’s check bits 

(subset of the rows in its H-matrix) depending on the defect map for a particular chip 

[Datta 10]. The defect map is obtained from a memory characterization test which 

identifies which cells are defective or marginal. The idea proposed here is that if a 

general t-bit error correcting code is implemented in hardware and requires cfull = n-k 

check bits for k information bits, then once the defect map is known, the defective cells 

become erasures w.r.t. the ECC. This fact can be used to select only a subset of the n-k 

rows in the H-matrix which are sufficient to provide the desired error detection/correction 

capability in the presences of the known erasures. By selectively reducing the number of 

rows in the H-matrix, the number of check bits that are actually stored and used, cused, can 

be restricted and the corresponding unused ECC hardware disabled. This reduces the 

check bit storage requirements and hence frees up more of the cache for storing data and 

improving performance. This strategy is applied to the problem of providing reliable 

cache operation in ultra-low voltage modes, and results indicate that with the proposed 

post manufacturing ECC customization, a fraction of the number of check bits are 

required compared to using a full OLS code for handling a particular defect rate. 
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In chapter 5 we investigate the application of ECCs to the reliability problem 

posed by phase change memories, one of the possible candidates for future generation of 

memory. We explore the concept of an adaptive multi-bit error correcting code for phase 

change memories that provides a manifold increase in the lifetime of phase change 

memories thereby making them a more viable alternative for DRAM main memory 

[Datta 11a]. A novel aspect of the proposed approach is that the error correction code 

(ECC) is adapted over time as the number of failed cells in the phase change memory 

accumulates. The operating system (OS) monitors the number of errors corrected on a 

memory line, and when the number of errors on a line begins to exceed the strength of the 

ECC present, the ECC strength is adaptively increased. As this happens, the performance 

of the memory system gracefully degrades because more storage is taken up by check bits 

rather than data bits thereby reducing the effective size of a cache line since less data can 

be brought to the cache on each read operation to the PCM main memory. Experimental 

results show that the lifetime of a phase change memory can be significantly extended 

while keeping the fraction of data to check bits as high as possible at each stage in the 

lifetime of the phase change memory. 

Finally chapter 7 summarizes the contribution of the dissertation. We conclude by 

providing some direction for future work. 
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Chapter 2: Exploiting Unused Spare Columns to Improve Memory 
ECC 

2.1. INTRODUCTION 

Memories are very dense structures that are especially susceptible to defects. In 

most cases, memories take up a very large percentage of a chip’s area. In order to 

improve yield, spare rows and columns are often included in a memory to allow for 

repairing the memory [Kim 98], [Zorian 03]. Defective cells, bit lines, or word lines, can 

be repaired by replacing the defective rows or columns with the spares. While the worst-

case most defective memories on the tail end of the statistical curve may use all of the 

spare resources, most memories will have unused spare resources after the repair process.  

This chapter describes a methodology to exploit these unused resources, when available, 

to improve the reliability of the memory by enhancing its existing error coding.  

Transient errors due to radiation, power supply noise, etc., can cause bit-flips in a 

memory. To protect the data integrity of the memory, an error correcting code (ECC) is 

generally employed. The most common error correcting code that is used is single-error-

correcting, double-error detecting (SEC-DED) codes [Hamming 50], [Hsiao 70]. These 

codes can correct single bit errors in any word of the memory and can detect double bit 

errors. These codes require storing additional check bits in the memory. For a memory 

with 32 bit data words, 7 check bits are required. So the memory would need 39 columns 

for each logical word plus any additional spare columns that are included for repair. In 

some cases, check bits are used along with spare rows and columns to get combined 

fault-tolerance. In [Stapper 92], interleaved words with redundant word lines and bit lines 

are used in addition to the check bits on each word. 
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Some previous work has been done to enhance the reliability of memories without 

increasing the size of the memory. One limitation of SEC-DED codes is that if a triple-bit 

error occurs, it may not be detected, but rather it may be mis-corrected as if it were a 

single bit error [Hsiao 70]. The probability of mis-correction for triple bit errors for 

conventional SEC-DED codes for 32 bit data words is around 60% or more. A code with 

r check bits can protect up to 2r-1-r data bits. Most memories will not have exactly that 

number of data bits, and hence shortened codes must be used. For shortened codes, there 

is a degree of freedom in selecting the set of columns in the parity-check matrix (H-

matrix). In [Richter 08], a search procedure was described for selecting the columns in an 

H-matrix for a shortened code that minimizes the mis-correction probability for triple bit 

errors. For example, they found an SEC-DED code for 32 bit data words which has a 

triple error mis-correction probability of 47%. This increases the reliability of the 

memory at no additional cost other than a few extra XOR gates in the checker. 

Another limitation of SEC-DED codes is that they can only detect, but not 

correct, double-bit errors. Studies have shown that 1-5% of single event upsets (SEUs) 

can cause multiple-bit errors (MBUs) [Satoh 00], [Makihara00], [Kawakami 04]. Most 

MBUs will affect nearby cells. In [Dutta 07], it was shown that by carefully selecting and 

ordering the columns in the H-matrix for an SEC-DED code, it is possible to correct all 

adjacent double-bit errors in addition to correcting all single bit errors thereby creating an 

SEC-DAEC code. Since the most likely double-bit errors will be adjacent, this is very 

useful. The limitation of SEC-DAEC codes is that they may not detect all non-adjacent 

double-bit errors. The SEC-DAEC code reported in [Dutta 07] for 32-bit data words has a 

51% double-bit mis-correction probability. [Richter 08], a better code was found which 

has a 37% double-error mis-correction probability. 
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In this work, we propose an extremely low-cost scheme that exploits unused spare 

columns to store additional check bits which can be used to significantly reduce the mis-

correction probability for triple-errors in SEC-DED codes or non-adjacent double-errors 

in SECDAEC codes. The proposed scheme does not require that any additional columns 

be added to the memory itself, but rather it simply exploits unused spare columns left 

over after memory repair. Implementing the proposed scheme requires only adding a few 

additional XOR gates to the check bit generation logic and providing a simple 

mechanism to disregard the additional check bits corresponding to the spare columns that 

become unavailable due to their being used for repair.  

The sections of this chapter are organized as follows. Sec. 2.2 provides an 

overview of linear block codes and properties of SECDED and SEC-DAEC codes. Sec. 

2.3 describes the proposed scheme for using extra check bits to reduce mis-correction. 

Sec. 2.4 describes the hardware implementation for the proposed scheme. Experimental 

results are shown in Sec. 2.5, and Sec. 2.6 is a conclusion. 

2.2 LINEAR BLOCK CODES 

Conventional SEC-DED codes [Hamming 50], [Hsiao 70] are systematic linear 

block codes [Peterson 72], [Pradhan 96]. In a (n,k) linear block code, k data bits are 

encoded by n-bit codewords. The number of check bits is r=(n-k). The (r×n) parity-

check matrix (H-matrix) completely defines the code. C is a codeword of the code if and 

only if: 

H·CT = 0 

where CT is the transpose of the codeword C. Let each element in the error vector E be a 

1 if the corresponding bit is in error and a 0 if the bit is error-free, then an erroneous 

message can be represented as Verror = V□E. The syndrome, S, is defined as: 
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S = H·Verror = H·(V□E) = H·V□ H·E = H·E 

If there is no error (i.e., E=0), then the syndrome is all zero (i.e., S=0). If the 

syndrome is non-zero, then an error is detected. Let hi represent the i-th column of the -

matrix. If the i-th bit has a single error, then the error vector, E, is all zero with only the i-

th bit being a one. The syndrome, which is equal to the product of H and E, will be equal 

to hi. For an SEC Hamming code, each column vector in the H-matrix is non-zero and 

distinct [Hamming 50]. This ensures that the syndrome for any single bit error will result 

in a unique syndrome. By decoding the syndrome, it is possible to determine which bit 

the error is in and flip the value of that bit to correct the error. 

For a double-bit error, the syndrome is equal to the XOR of two columns of the 

H-matrix. If the XOR of any two columns is equal to the syndrome for any single bit 

error (i.e., equal to any column in the H-matrix), then the double-bit error syndrome 

would alias with the single-bit error syndrome. The correction logic would mis-correct 

the double-bit error thereby missing the error. To avoid this, it was shown in [Hsiao 70], 

that if every column of the H-matrix has an odd number of 1’s and is distinct, then the 

code will be SEC-DED. The reason is that the XOR of any two columns with an odd 

number of 1’s will produce a syndrome with an even number of 1’s and hence is 

guaranteed to be different from any single column. This means that the syndromes for 

double-bit errors will always be different from the syndromes for single-bit errors, so the 

code will always detect double-bit errors and not miscorrect them. Hsiao codes are also 

called odd-weight column codes. Note that many double bit errors have the same 

syndrome, so it is generally not possible to correct double-bit errors since their 

syndromes cannot be distinguished. 

For triple-bit errors, the syndrome is formed from three columns being XORed 

together. If the syndrome matches one of columns of the H-matrix, then it will be mis-
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corrected as a single-bit error. The number of possible triple-bit errors is  , and the 

fraction of those that match columns of the H-matrix is the mis-correction probability for 

triple-errors. For most conventional SEC-DED codes, it is in excess of 50%.  

In [Dutta 07], the H-matrix is constructed using odd-weight columns where the 

columns are carefully ordered so that adjacent columns when XORed together give a 

syndrome that is not equal to the syndrome for any single-bit error or the syndrome for 

any other adjacent double-bit error. The number of possible adjacent double-bit errors is 

equal to n-1 and the number of single bit errors is n, so the combined set of 2n-1 

syndromes must all be distinct from each other. This permits correction of both single-bit 

errors and adjacent double bit errors (i.e., SEC-DAEC). However, non-adjacent double-

bit errors may match one of the (n-1) syndromes of the adjacent double-bit errors and 

hence may result in mis-correction. 

2.3 PROPOSED SCHEME 

The proposed scheme in [Datta 09] involves exploiting unused spare columns in 

the memory to store additional check bits. These additional check bits add extra rows to 

the H-matrix and increases the dimension of the syndrome. This makes it easier to 

distinguish syndromes thereby reducing the chance of mis-correction as well as reducing 

the chance of a multi-bit error’s syndrome aliasing with the error-free all-zero syndrome 

and not being detected at all. 

Note that if all the spare columns are used for repair, then for some chips, it may 

not be possible to store any additional check bits. Thus, the H-matrix that is selected 

should be such that if no additional check bits are available, it still retains the SEC-DED 

property. The easiest way to ensure this is to start with an SEC-DED code, and then 

incrementally add the extra rows to it.  
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The rows are added one at a time in a greedy fashion so that if only one spare is 

available after repair, then the maximum benefit for that one row is achieved. Consider 

the example in Fig. 2.1 which is a (7,3) SEC-DED Hsiao code. It has  = 35 possible 

3-bit errors, and 28 of those will result in mis-correction. In Fig. 2.2, an extra check bit is 

added to the H-matrix from Fig. 2.1. This results in an additional row (the bottom-most 

one) and an additional column (the right-most one). The last 5 columns in Fig. 2.2 

correspond to check bits and hence form an identity matrix. The left three columns 

correspond to message bits. The bottom-most bit in the first three columns may be set to 

any value so as to minimize the mis-correction probability. In Fig. 2.2, the bottom-most 

bit in the second column is set to 1 and the others to 0. Now only 12 of the 35 possible 

triple-bit errors will result in mis-correction. 

 
Figure 2.1: Example of (7, 3) Hsiao Code 

 

Figure 2.2: Adding an extra row to the example in Fig. 2.1 

Starting from an SEC-DED code, the proposed scheme adds rows one at a time. 

The columns corresponding to check bits form an identity matrix, so the degree of 

freedom is in selecting the 1’s and 0’s in the row for the columns corresponding to 

message bits. There are few different strategies that can be used. If the number of 

message bits is less than say 30, it is possible to do an exhaustive search. Each possible 
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combination of 1’s and 0’s for the row can be tried and the mis-correction probability 

computed. The one that minimizes the mis-correction probability is then selected. As the 

number of message bits gets larger, however, then an exhaustive search is no longer 

possible.  

For larger codes, an alternative to an exhaustive search would be to do a random 

search and simply keep the best code found. The number of triple-errors is equal to Cn 3 

which is manageable for n up to hundreds. It is feasible to enumerate all the triple-errors 

and compute the exact mis-correction probability for each candidate row. From our 

experiments, this gave quite good solutions. When comparing the results for an 

exhaustive search with those of a random search, there was not a significant difference in 

the results as can be seen in the experimental data in Sec. 1.5.  

The procedure is the same for SEC-DAEC codes. In this case, the goal is to 

minimize the number of nonadjacent double-bit errors that mis-correct. This is even 

faster to evaluate since there are fewer possibilities.  

When searching the codes, other criteria can be optimized as well such as total 

number of XOR gates or logic depth of the syndrome generator. 

Each row is added one at a time up to the maximum number of spare columns 

available in the memory. In the best-case, if no spare columns are used for repair, then all 

the extra rows will be active for error detection and correction. In the worst-case, when 

all spare columns are used for repair, then none of the extra rows will be active, and 

hence only the original SEC-DED code that was used as the starting point will remain. 

2.4 IMPLEMENTING PROPOSED SCHEME 

The proposed scheme in [Datta 09] can be implemented with very little 

modification to a normal memory that uses spare columns and is protected with an SEC-
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DED code. Figure 2.3 shows an example of the scheme assuming a single spare column. 

The additional logic that is added to support the scheme is the following:  

1. An extra XOR tree in the check bit generator and syndrome generator to support one 

additional check bit. 

2. An extra 2-input AND gate to disable the extra syndrome bit when determining error 

detection if the spare is used for repair.  

3. An extra 2-input OR gate in the correction logic for each data bit to disregard the extra 

syndrome bit if the spare is used for repair. This is shown in Fig. 2.4. 

          

Figure 2.3: Block Diagram of Proposed Scheme for One Spare Column 
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Other than what is listed above, the rest of the circuitry is already present in a 

conventional memory with a spare column and SEC-DED ECC. If the spare is used for 

repair, then the MUXes at the input and output of the memory will shift the bits so that 

the defective column is bypassed. The control signal for the MUX on the far right will be 

a ‘1’ if the spare is used for repair or if the spare column itself has a defect. If this control 

signal is a ‘0’, then the spare is available for storing the extra check bit. 

So if the spare is not used for repair, then the extra check bit generated by the 

check bit generator is stored in the spare column, otherwise, it is simply ignored. At the 

output of the memory, the extra syndrome bit that is generated is ignored if the spare is 

used for repair in which case error detection and correction are performed just as if that 

extra syndrome bit didn’t exist. However, if the spare is not used for repair, then the extra 

syndrome bit is used to help increase the chance of detecting a multi-bit error as well as 

reduce the probability of mis-correction. 

If multiple spare columns are used, then there are multiple control signals 

indicating whether each spare is used for repair or available for storing check bits. The 

extra control logic that was added to use one spare column would simply be replicated for 

each additional spare column. 
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Correct Bit di
when S = hi = [101011]T

&

+

Spare Used
for Repair

s0 s1 s2 s3 s4 s5

XOR

di

Corrected di  
Figure 2.4: Example of Bit-Slice of Correction Logic for Proposed Scheme 

2.5 EXPERIMENTAL RESULTS 

Experiments were performed for common data word sizes to quantify the benefits 

of the proposed scheme.  Table 2.1 shows the results for minimizing the triple-error mis-

correction probability for SEC-DED codes.  We started with a H-matrix that was 

original SEC-DED and then added one row to it. The extra row was selected at random 

from the 2n possible options, n being the total number of check bits including the extra 

bits. For a regular SEC-DED code on 16 data bits, n = 6 + number of extra check bits. 
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For smaller codes we would add each possible extra row to the original H-matrix, 

finally retaining the one which had least number of triple error mis-corrections. For codes 

that were too large to simulate all possible row combinations, we would run a fixed 

number of iterations – calculating for each added row the total number of triple error mis-

corrections – finally retaining the one that had the least number of mis-corrections.  

Results are compared with the best codes from [Hsiao 70] and [Richter 08].  For 

each code, the number of 2-input XORs that is required is shown along with the raw 

number of triple-bit errors that are mis-corrected and the probability of mis-correction.  

For the proposed method, results are shown for the cases where one, two, and three spare 

columns are available after repair.  As can be seen, the mis-correction probability is 

reduced dramatically at the cost of only a small number of additional XOR gates.  For 2 

and 3 spare columns, the code can detect nearly all triple-errors. Althought the prospect 

of having three unused or more unused spare columns leftover after the memory repair 

process is unlikely, our results show full potential of the proposed scheme’s effectiveness 

if more spare columns are to be available.  

Table 2.1: Comparison of Triple-Error Mis-correction Probability for SEC-DED codes 

[Datta 09] [Hsiao 70] [Richter 08] 
1 Spare Column 2 Spare Columns 3 Spare Columns Data 

Bits 
XORs Mis-corrected XORs Mis-corrected XORs Mis-

corrected XORs Mis-corrected XORs Mis-
corrected 

16 48 1,000 (64.9%) - - 58 448 (25.3%) 70 176 (8.7%) 76 52 (2.3%) 

32 96 5,452 
(59.66%) 115 4, 284 

(46.88%) 118 2,548 
(25.8%) 129 1,200 (11.3%) 138 588 (5.1%) 

64 181 33,568 
(56.28%) 250 26,616 

(44.63%) 265 16,176 
(26.0%) 308 9,084 (14.1%) 351 7,392 

(11.0%) 

Table 2.2. shows the results for SEC-DAEC codes.  Here the goal is to minimize the 

number of non-adjacent double-bit errors that are mis-corrected. The simulations were 

again done in a similar manner. A code that is originally SEC-DAEC-DED was chosen 
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and an extra row was added to the H-matrix. In a similar fashion as described above, all 

possible combinations were tried out for smaller codes and a fixed number of iterations 

were run for the bigger ones – all the while the goal being the added row should 

minimize the total number of non-adjacent double error mis-corrections. Again, as can be 

seen, the mis-correction probability drops significantly with each added check bit. Also, 

the improvement in the number of mis-corrections when compared to similar codes in 

[Dutta 07] and [Richter 08] is substantial, with our scheme reducing mis-corrections to 

negligible proportions for more than one spare column.  

Table 2.2: Comparison of Non-Adjacent Double-Error Mis-correction Probability for 
SEC-DAEC codes 

[Datta 09] [Dutta 07] [Richter 08] 
1 Spare Column 2 Spare Columns 3 Spare Columns Data 

Bits 
XORs Mis-corrected XORs Mis-corrected XORs Mis-

corrected XORs Mis-corrected XORs Mis-
corrected 

16 48 118 (56.2%) - - 55 68 (29.4%) 62 33 (13.0%) 67 24 (8.7%) 

32 96 379 (53.4%) 115 274 (39.0%) 117 203 (27.4%) 130 108 (13.8%) 140 72 (8.8%) 

64 224 1316 (53.0%) 250 864 (34.8%) 263 688 (26.9%) 306 469 (17.8%) 353 395 (14.6%)

 

As had been mentioned earlier, in the case of bigger size codes that did not allow 

exhaustive simulation – for choosing the extra row – we ran a fixed number of iterations 

and picked the best row based on number of mis-corrections. Table 2.3 shows the 

comparison between random and exhaustive searches for different size of codes. The 

very little difference in the two approaches justifies the random search for bigger code 

sizes.  
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Table 2.3: Comparison of Random and Exhaustive Searches for Obtaining Optimal 
Result 

Triple-Error Mis-correction Probability Adding 1 
Spare Row 

Non-Adjacent Double-Error Mis-correction Probability 
Adding 1 Spare Row 

Random Search Exhaustive Search Random Search Exhaustive Search 

Data 
 

Bits 
XORs Mis-corrected XORs Mis-corrected XORs Mis-corrected XORs Mis-corrected 

16 56 453 (25.5%) 58 448 (25.3%) 56 72 (31.2%) 55 68 (29.4%) 

18 63 352 (13.5%) 63 352 (13.5%) 65 51 (17.0%) 65 51 (17.0%) 

20 76 496 (15.1%) 76 496 (15.1%) 73 65 (17.2%) 73 65 (17.2%) 

2.6 CONCLUSIONS 

In this chapter, a scheme for exploiting unused spare columns after repair is 

described for improving memory reliability.  It is shown that very little additional 

hardware beyond what is already present for a memory with spare columns and SEC-

DED ECC is required to use this scheme.  The experimental results show that the mis-

correction probability can be significantly reduced. 

Note that if a memory has both spare rows and spare columns, then the spare rows 

could be used first thereby increasing the number of spare columns that remain for 

providing additional check bits. 
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Chapter 3: Generating Burst-error Correcting Codes from Orthogonal 
Latin Square Codes – a Graph Theoretic Approach 

3.1 INTRODUCTION 

Single event upsets (SEU) and soft errors generated by ionizing particles or 

neutron interactions with semiconductor devices have been identified as a critical and 

possibly dominant failure mechanism in modern CMOS circuits. Error detection and 

correction schemes in memories and microprocessor caches are common and drastically 

reduce the externally observable error rate.  

A key consideration for these protection schemes is the treatment of multiple bit 

errors that can be generated when adjacent bits fail as a result of a single strike. Studies 

have shown that 1-5% of single event upsets (SEUs) can cause multiple-bit errors 

(MBUs) [Satoh 00], [Makihara 00], [Kawakami 04].  Most MBUs will affect nearby 

cells. 

These events can prevent the detection of an error in parity protected circuits, or 

make an error uncorrectable in spite of the use of Error Correction Codes (ECC). Bit 

interleaving is commonly used to minimize the error rate contribution of multi-bit errors. 

It refers to a memory layout architecture in which physically adjacent bits belong to 

different logic words. The result is that from an error detection and correction standpoint, 

two adjacent failing bits appear as two single bit errors rather than as a double bit error in 

the logic word. Bit interleaving rules are often defined as the minimum physical distance 

separating two bits belonging to the same logic word. The quantification of their 

effectiveness requires a detailed understanding of the multi-bit failure probabilities and 

operating parameter sensitivities which are generally not available in the open literature 

[Maiz 03]. However bit interleaving would be limited by the width of the memory bus. 
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Moreover with continuous voltage scaling multiple-bit errors pose an important 

challenge, especially for memory sub-systems. A dramatic increase in MCU rates relative 

to SBU is projected for geosynchronous orbits, where direct ionization by heavy-ions 

dominates [Seifert 08].  

In the non-volatile memory space, multilevel cell (MLC) NAND flash memories, 

which are widely used in mobile and wireless systems, have inferior data retention times 

compared to single bit cell (SLC) NAND flash. Although multi-leveling cell (MLC) 

improves memory density and performance of memory storage systems in general, they 

would also be prone to a greater number of errors caused due to shift of threshold voltage 

during cell programming operations [Micheloni 06] [Chen 08]. Such systems would 

require stronger ECC than traditional single error correction codes. Therefore, the data 

reliability has become an important issue in most communication and storage systems for 

high speed operation and mass data process. 

In this work, a novel method is proposed for designing a multiple error correcting 

code specifically targeted towards correcting burst errors. We show how, given an 

Orthogonal Latin Square code, it can be converted into a code capable of correcting burst 

errors of a specific length in addition to its original capacity with minimal overhead 

[Datta 11b].  

The rest of the chapter is organized as follows, section 3.2 talks about other 

knows methods of multi-bit error detection., section 3.3 explains OLS codes, section 3.4 

explains our proposed methodology followed by the results in section 3.5. Finally section 

3.6 concludes along with experimental results. 
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3.2 RELATED WORK 

For high defect rates, memory repair schemes based on spare rows and columns 

are not effective.  Much higher levels of redundancy are required that can tolerate multi-

bit errors. The two-dimensional ECC proposed by [Kim 07] tolerates multiple bit errors 

due to non-persistent faults, but is slow and complicated to decode.  

Conventional SEC-DED codes can only detect, but not correct, double-bit errors.  

In [Dutta 07], it was shown that by carefully selecting and ordering the columns in the H-

matrix for an SEC-DED code, it is possible to correct all adjacent double-bit errors in 

addition to correcting all single bit errors thereby creating an SEC-DAEC code.  Since 

the most likely double-bit errors will be adjacent, this is very useful.  The limitation of 

SEC-DAEC codes is that they may not detect all non-adjacent double-bit errors. While 

scaling up conventional parity check code for correcting multi-bit errors requires less 

check bits, the additional number of syndromes that needs to be stored for correction 

purposes makes parity check matrices an unattractive solution for multi-bit errors. 

In some cases, check bits are used along with spare rows and columns to get 

combined fault-tolerance. In [Stapper 92], interleaved words with redundant word lines 

and bit lines are used in addition to the check bits on each word. [Su 05] proposes an 

approach where the hard errors are mitigated by mapping to redundant elements and ECC 

is used for the soft errors. Such approaches will not be able to provide requisite fault 

tolerance under high bit error rates when there are not enough redundant elements to map 

all the hard errors. 

[Micheloni 06] proposed a scheme that uses Bose- Chaudhuri-Hocquenghem 

(BCH) codes to correct multiple errors in NAND flash. However, NAND flash memory 

systems process with a large size of data such as a page or a block unit. Hence, BCH 

codes may not be appropriate for a NAND flash controller [Chen 08]. [Kim 10] proposed 
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a product code using a Reed-Solomon code scheme for NAND flash memories, capable 

of correcting multiple bit errors. Although Reed-Solomon codes are good for burst errors, 

the decoding time would be enormous (> 500 clock cycles) [Kim 10]. 

The application of OLS codes for handling the high defect rates in low power 

caches as described in [Christi 09] provides a more attractive solution.  While OLS 

codes require more redundancy than conventional ECC, the one-step majority encoding 

and decoding process is very fast and can be scaled up for handling large numbers of 

errors as opposed to BCH codes, which while providing the desired level of reliability 

requires multi-cycles for decoding [Lin 83]. 

Since most multi-bit errors are likely to result in adjacent bit failures, a burst error 

code seems like an optimal solution. In this chapter we show how a regular OLS code can 

be converted to correct burst errors of specific lengths. This way we can combine the 

single-step decodable facet of OLS codes along with its high error correction capability. 

The capability of OLS codes to correct multiple errors in a single cycle is synergistic with 

a high performance memory system, in particular MLC NAND. This way even in the 

presence of multiple errors, a likely scenario in MLC NAND systems [Micheloni 06], the 

error detection and correction step would not be a bottleneck in the way of improved 

memory performance. Our proposed solution preserves this property of OLS codes while 

enabling it to correct burst errors with minimal overhead. 

3.3 ORTHOGONAL LATIN SQUARE CODES 

A Latin square [Hsiao 70] of order (size) m is an m x m square array of the digits 

0, 1, . . . , m - 1, with each row and column a permutation of the digits 0,1, … , m - 1. 

Two Latin squares are orthogonal if, when one Latin square is superimposed on the other, 

every ordered pair of elements appears only once. 
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In general, a t-error correcting majority decodable code works on the principle 

that 2t + 1 copies of each information bit are generated from 2t + 1 independent sources. 

One copy is the bit itself received from memory or any transmitting device. The other 2t 

copies are generated from 2t parity relations involving the bit. By choosing a set of h 

Latin squares that are pair-wise orthogonal, one can construct a parity check matrix such 

that the number of 1’s in each column is 2t = h + 2. The orthogonality condition ensures 

that for any bit d, there exists a set of 2t parity check equations orthogonal on di, and thus 

makes the code self-orthogonal and one-step majority decodable. One-step majority 

decoding is the fastest parallel decoding method. The t-error correcting codes generated 

by OLS codes [Hsiao 70] have m2 data bits and 2tm check bits per word. 

Let the m2 data bits be denoted by a vector: 
[ ]
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I2tm is an identity matrix of order 2tm and M1, . , M2t are submatrices of size m x 
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The matrices M1….M2t are derived from the existing set of orthogonal Latin 

squares L1, L2, . . . , L2t-2 of size m x m. Denote the set of Latin squares as, 

[ ]
mxmijlL 1

1 =  
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where lij ∈ {1, 2, …, m} 
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Figure 3.1: Decoding Data Bit di with Majority Voter 

Once the H-matrix is constructed, the decoding for each data bit is done using a 

majority voter as illustrated in Fig. 3.1.  When decoding data bit di, the set of bits in 

each of the 2t H-matrix rows that di is present in are XORed together and serve as an 

input to a majority voter along with di itself giving a total of 2t+1 inputs.  Since the set 

of inputs to the XOR gates are orthogonal, the OLS code will provide the correct output 

as long as the number of errors is less than half the number of inputs to each voter, i.e., t 

or less.  Note that OLS coding does not need to generate a syndrome, but can “correct” 

errors directly from majority voting.  
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As an example, a single error correcting OLS code for 16 data bits is shown 

below. For 16 data bits, m = 4. Also, since this is a single error correcting code, t = 1. 

Therefore the total number of check bits will be 2*t*m = 8. The H-matrix for the 

resulting (24, 16) code is shown below. 
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As can be seen from the above matrix, each data bit, from d0 to d15 can be 

reconstructed from two independent parity equations. For example, bit d0 can be 

regenerated by XORing, d1, d2, d3, c0 and also d4, d8, d12, c4. These two independent 

equations along with bit d0 itself would be the three inputs to the voter. Using such a 

scheme bit d0 can be correctly decoded in the presence of one error. This shows the above 

H-matrix can tolerate a single error anywhere in the code. 

3.4 PROPOSED SCHEME 

The proposed scheme in [Datta 11b] is based on the fact that for decoding OLS 

codes, as long as each bit has requisite number of inputs feeding into the majority voter, 

multiple-bit errors can be corrected using a much smaller code. Say, for example bits dx, 

dx+1, dx+2 are in error. If each row of the OLS matrix contains at most only one of dx, dx+1, 

dx+2 and each of these bits occur in at least 2t different, orthogonal rows of the OLS 

matrix, then the OLS code is capable of handling any t error pattern and also a burst error 

pattern on the bits dx, dx+1, dx+2. Moreover since by definition all rows of an OLS matrix 
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are mutually orthogonal, each particular conflict can occur only once in the code. This 

helps limit the number of conflicts that needs to be resolved. To summarize, in this 

example, if the parity relations are chosen carefully then 2t + k bits should be sufficient 

to detect all t-bit error patterns and any burst of length at most three. So, for a OLS code 

to correct all burst error patterns of length b, no parity relation should be comprised of 

bits adjacent by a distance b or less.  

As part of our scheme we try to resolve all “conflicts” in a given OLS code and 

convert it into one capable of correcting all burst errors of length b. “Conflicts” here are 

defined as any row in the original OLS matrix where any combination of b adjacent bits 

appear together. The OLS matrix cannot correct all burst errors as long as even one such 

row is present. The problem has been modeled as a graph coloring problem. All the bits 

which cause conflicts are modeled as graph nodes. Once the set of nodes have been 

determined, the next step is to formulate the constraints that would dictate which bits can 

be grouped together. So, here we have a problem where a set of nodes needs to be 

grouped into as few sets as possible while adhering to some specific rules. If, now, we 

think of the set of nodes as a set of vertices in a graph whose edges are the specific rules 

binding their grouping, the problem then almost perfectly lends itself as a graph coloring 

problem.  

Graph coloring refers to a problem, where we seek to assign a color to each node 

of an undirected graph G so that if (u, v) is an edge, then u and v are assigned different 

colors; and the goal is to do this while using a small set of colors. More formally, a k-

coloring of G is a function f: V  {1, 2, . . . . , k} so that for every edge (u, v), f(u) ≠ f(v). 

For the burst-error problem under consideration, the number of colors required to color 

the graph is equal to the number of extra check bits required. There is however, one key 

difference between the traditional graph coloring problem and our problem at hand. 
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While in a conventional graph coloring problem, one would try to color all nodes of the 

graph using a minimum set of colors, all we need for our purposes is to select any one 

node from each conflicting pair and move them to a different line.  The justification 

behind this is as follows. Each conflicting pair represents two bits, separated by a 

distance less than or equal to b. The structure of an OLS matrix is such that for all b < m, 

conflicting nodes will always be in pairs. Now if we choose any one node from each 

conflicting pair and move them to different lines, following pre-determined rules, we can 

convert the OLS code into a burst error correcting code. Hence once we single out the 

entire set of conflicting nodes (the set V of graph vertices) and determine the constraints 

binding their mutual positioning in a line of the OLS matrix, we trim the set of nodes by 

picking one from each conflicting pair. Then we have our final graph which we proceed 

to color in a manner described below with the final goal of using up as few colors as 

possible. 

Since we expect the set of conflicting nodes to be fairly constrained as far as their 

mutual positioning in a single line goes, especially for smaller data sizes, we choose to 

represent the graph using an adjacency matrix. Identifying conflicting pair of nodes 

requires a single pass through each bit of the OLS matrix once. Since an OLS matrix 

capable of 2t errors has 2tm check bits and m2 data bits, identifying all conflicting pair of 

nodes requires O (m3) time. Once all the conflicting pair of nodes has been recognized, 

the edges are determined following the rules listed below, 

i) if any two nodes u, v of the graph appear in a row of the OLS matrix which 

produced neither u nor v,  then (u, v) is an edge of G. 

ii) if any two nodes u, v of the graph are separated by a distance less than or equal 

to b, then (u, v) is an edge of G. 

This takes O (n2), n being the number of nodes in the graph [Cormen 01]. 
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Once the graph G has been created, there are two separate problems which need 

to be solved in order. First we need to trim the graph, choosing one node from each 

conflicting pair. While choosing any one from the conflicting pair would preserve the 

functionality of our goal, choosing the node with fewer edges incident upon it helps us in 

the next step, where we do the coloring. Since two nodes sharing an edge between them 

needs to be colored differently, fewer edges would allow us to achieve our coloring goals 

using fewer colors which translate to fewer extra check bits. The argument rings true 

intuitively as well, since fewer edges mean less constraints and subsequently more 

freedom in coloring the graph. 

Once the set of nodes, V, and the set of edges, E, has been trimmed, we are left 

with the final step in our problem i.e. to color G. It has been shown that k-coloring, for k 

> 2 is a NP complete problem [Kleinberg 06]. In this work we try solving the graph 

coloring problem using an underlying Breadth First Search (BFS) structure. In order to 

adapt the traditional BFS algorithm for the purposes of graph coloring we needed to use 

some additional data structures. Each node maintains an array listing what are the 

forbidden colors for that node. Thereafter the BFS algorithm is applied as follows, 
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i) start with a source node, s 
ii) add s to the processing queue Q 
iii) while Q ≠ □,  

a) u  dequeue (Q) 
b) make a single pass through the array listing forbidden colors, 

selecting the first color, say cu  not listed as forbidden for u 
c) for each node v ∈ Adj (u) 

1. set cu as a forbidden color 
2. enqueue (v) 

d) set u.visited  1 
iv) go through set of nodes, if u.visited ≠ 1, run steps i)-iii) on it (after 
traversing the queue Q, if any node has u.visited ≠ 1, it would mean that node 
is disconnected from the rest of the graph, hence a separate modified BFS 
algorithm needs to be run on that node to ensure that all nodes of the graph are 
covered) 

In addition to traversing each node and each edge of the graph as part of our 

coloring algorithm, one has to go through an array for each node to determine what 

should be the correct color for that node. The cost for that traversal is of O (k), for an 

array of size k. Hence, using our chosen adjacency-matrix representation of the graph, the 

complexity of the algorithm described above is bounded by O (n2k).  

The number of colors used, k, signifies the number of extra check bits required to 

convert the original OLS code into a code capable of correcting all burst errors of length 

b or less. For our experiments, the array in each node keeping track of forbidden colors 

would be initialized to size k. If at any node, all k colors are designated as forbidden, that 

would mean the graph cannot be colored using k colors. Subsequent calls to the coloring 

function would be made with increasing values of k unless a valid solution was obtained. 

The next section lists some of the experimental results we obtained as proof of concept 

for our proposed scheme.  
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3.5 RESULTS 

Table 3.1 shows experimental results where OLS codes that were originally 

double error correcting were converted to double error correcting and 3-bit burst error 

correcting code. Experiments were performed for different sizes of m. Although a double 

error correcting OLS code would include the sub-matrices M1, M2, M3 and M4, the 

structure of M1 is such that there would be too many conflicts due to bit adjacency. Hence 

without any loss of generalization, a double error correcting OLS code was formed out of 

sub-matrices M2, M3, M4 and M5. This ensured a minimal number of conflicts and 

subsequently a better solution. 

As shown in Table 3.1, the overhead of extra check-bits diminish with increasing 

size of code. This can be explained by virtue of the fact that for a larger m there is more 

freedom in the placement of bits giving rise to fewer conflicts.  

Table 3.1: Check-bit overhead for 3-bit burst-error protection and Double Error 
Correcting OLS code 

m Original check-bits Data Bits Extra added check-bits Percentage Overhead

4 16 16 4 25% 
8 32 64 4 12.50% 

16 64 256 3 4.69% 

In Table 3.2, we show how attempting to build a code capable of handling longer 

burst errors affects check bit overhead. As expected we see that a larger number of check 

bits is necessary for stronger codes. We see from Fig. 3.1 that the increase in the number 

of extra check-bits follows a piecewise linear relationship with the length of burst-errors 

to be corrected. 
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Table 3.2: Check-bit overhead for DEC OLS code with m=16 while burst-error length is 
varied 

Burst Error Length Extra added check-bits Percentage Overhead 
3 3 4.69% 
5 3 4.69% 
7 4 6.25% 
9 5 7.81% 
11 5 7.81% 

 

 
Figure 3.2: Burst-error length vs check-bit overhead 

3.6 CONCLUDING REMARKS 

In this chapter we have presented a scheme for generating one-step decodable 

burst-error correction codes. Our experimental results show that the check-bit overhead is 

a decreasing function for increasing code size, which makes this an attractive solution to 

counter the worsening problem of multiple-bit errors in memory systems. 
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Chapter 4: Post-Manufacturing ECC Customization Based on 
Orthogonal Latin Square Codes and Its Application to Ultra-Low 

Power Caches 

4.1 INTRODUCTION 

Voltage scaling, which is one of the most effective ways to reduce power 

consumption, is limited by a minimum value referred to as Vccmin beyond which circuits 

may not function reliably [Taur 98]. Voltage scaling beyond Vccmin gives rise to reliability 

issues, most notably for the memory sub-systems.  In order for Vccmin to be reduced to 

enable ultra-low power modes in microprocessors and other circuits, some means for 

handling high memory bit failure rates is required. 

One general approach that has been proposed in [Wilkerson 08] is to trade off 

cache capacity for reliable low voltage operation.  The idea is that in high-voltage 

operation, failure rate is low, so the entire cache is available.  However, in low voltage 

operation, many memory cells become unreliable, so the cache size is sacrificed to 

increase reliability.  Two approaches were proposed for this in [Wilkerson 08] which are 

based on performing a low voltage characterization test of the memory and identifying 

the failing cells.  One approach (called word-disable) uses two physical lines to 

configure one logical line where only non-failing words are used.  The other approach 

(called bit-fix) uses 25% of the cache to store a defect map which is used to bypass 

failing cells.  Another approach that has been proposed in [Chisti 09] is based on using 

part of the cache to store the check bits for an Orthogonal Latin Squares (OLS) code 

[Hsiao 70] when operating in low voltage mode.  An OLS code is a multi-bit error 

correcting code which is one-step majority decodable which allows faster encoding and 

decoding than traditional ECC at the cost of more check bits.  The OLS code can be 
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used to encode each cache line and correct errors that may arise due to failing cells as 

well as due to transient errors.  The amount of usable cache size depends on the number 

of check bits required for the OLS code which in turn depends one how many errors the 

OLS code can correct. 

The idea proposed in this work is that after manufacturing a chip, a memory 

characterization test [Chang 07] can be performed to generate a defect map that identifies 

which cells fail or are vulnerable in low voltage operation.  Once this information is 

known, the marginal cells effectively become erasures (i.e., errors with known locations), 

and it is possible to select a subset of the rows in the H-matrix for an OLS code which are 

sufficient to provide the desired level of error detection/correction capability in the 

presence of the defective cells for that particular chip [Datta 10].  This reduces the 

number of check bits that need to be stored in the cache thereby freeing up more of the 

memory for storing data and improving performance.  Note that conventional 

approaches that use spare rows and columns for repairing memories can only repair a 

small number of defects and hence are not effective for high defect rates [Kim 98].  

Because OLS codes use majority decoding for error correction, it is very easy to disable 

portions of the code by simply masking bits at the input to the voters and adjusting the 

threshold of the voter.  An OLS code can be selectively reduced by storing one 

configuration bit for each row in the H-matrix which indicates whether or not that row 

should be included when encoding and decoding.  By selectively reducing the number 

of rows in the H-matrix that are used, the number of check bits that need to be stored for 

each word is reduced thereby reducing the amount of redundancy. The idea of post-

manufacturing customization of the ECC can be applied to the problem of providing 

reliable cache operation in ultra-low power modes of operation.  A t-error correcting 

OLS code is selected for a particular cache design based on the expected defect rate and 
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implemented in full with on-chip hardware.  It requires cfull=n-k check bits for k-

information bits. t must be selected large enough to handle the worst-case number of 

defects in any line of the cache.  If some cache line has more than t defects, then the 

cache is unusable and the chip must be discarded.  Based on the desired yield, t is 

selected appropriately.  After a chip is manufactured, a memory characterization test is 

used to obtain a defect map.  It may turn out that for a particular chip, no cache line has 

more than (t-3) defects present.  Thus, the t-error detecting code is overkill.  Even if 

some line has t-errors present, it still may not be necessary to use the entire H-matrix of 

the OLS code.  In section 4.3, a procedure is described for selecting a minimal number 

of rows in the H-matrix so that e additional transient errors can be corrected in addition to 

the permanent erasures identified in the defect map.  In this way, the number of check 

bits that are actually used for a particular chip, cused, is smaller than for using the full 

code, cfull, however, the code is still able to provide the desired level of protection.  The 

configuration bits on the chip are set to indicate which rows of the H-matrix to use while 

all others are disabled.  Compared to [Christi 09], the proposed method use up less of 

the cache for storing the check bits in low power mode, which means less caches misses 

and resultant memory accesses. 

Even though the hardware for the full code, cfull is implemented on the chip with 

the proposed method, the functional design can be done assuming an a priori upper bound 

on cused, the number of check bits that will actually be used post-manufacture, based on 

statistical analysis for the defect rate that is to be tolerated.  This allows the desired level 

of fault tolerance to be achieved with fewer redundant memory cells storing check bits.  

In effect, the proposed method is exploiting the degree of freedom in selecting which 

portion of a larger code to use to get more leverage from a certain number of check bits in 

comparison to a conventional approach which uses the same code for every chip.  It 
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provides a beneficial tradeoff where a small amount of extra ECC circuitry (hardware 

redundancy) is added in order to reduce the number of check bits (information 

redundancy) that needs to be stored in the cache.  This increases the performance of the 

cache while still achieving the desired level of reliability. 

4.2 RELATED WORK 

Most prior work in memory ECC has focused on low failure rates present at 

normal operating voltages, and has not focused on the problem of persistent failures in 

caches operating at ultra low voltage where defect rates are very high. 

For high defect rates, memory repair schemes based on spare rows and columns 

are not effective.  Much higher levels of redundancy are required that can tolerate multi-

bit errors in each cache line. In addition to the techniques in [Wilkerson 08] mentioned 

earlier, other prior work includes the two-dimensional ECC proposed by [Kim 07] which 

tolerates multiple bit errors due to non-persistent faults, but is slow and complicated to 

decode. Similarly the approach in [Kim 98] can tolerate as many faults as can be repaired 

by spare columns, which would be insufficient in the present context with high bit-error 

rate. In some cases, check bits are used along with spare rows and columns to get 

combined fault-tolerance. In [Stapper 92], interleaved words with redundant word lines 

and bit lines are used in addition to the check bits on each word. [Su 05] proposes an 

approach where the hard errors are mitigated by mapping to redundant elements and ECC 

is used for the soft errors. Such approaches will not be able to provide requisite fault 

tolerance under high bit error rates when there are not enough redundant elements to map 

all the hard errors. 

The application of OLS codes for handling the high defect rates in low power 

caches as described in [Christi 09] provides a more attractive solution.  While OLS 
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codes require more redundancy than conventional ECC, the one-step majority encoding 

and decoding process is very fast and can be scaled up for handling large numbers of 

errors as opposed to BCH codes, which while providing the desired level of reliability 

requires multi-cycles for decoding [Lin 83]. The post-manufacturing customization 

approach proposed in this chapter can be used to reduce the number of check bits and 

hence the amount of redundancy required in the memory while still providing the desired 

level of reliability.  Note that the proposed approach does not reduce the hardware 

requirements for the OLS ECC as the whole code needs to be implemented on-chip since 

the location of the defects is not known until post-manufacturing test is performed. 

4.3 PROPOSED SCHEME 

The proposed scheme in [Datta 10] leverages memory tests [Chang 07] that can 

be performed at manufacture time or out in the field when the system is booted up. These 

tests identify which are the vulnerable bits in the cache. The defect map can then be used 

to select a subset of the rows from the original t-error correcting OLS matrix. The suspect 

bits will be referred to as erasures (i.e., errors with known locations). For any cache line, 

given the defect map, the goal is to be able to correct all erasures along with one or more 

random errors that may occur on any other bit in that cache line. 

For ease of explanation, two terms will be defined with respect to each 

information bit di – a “good row” and a “bad row”. A “good row” for information bit di is 

a row of the OLS H-matrix that does not have a ‘1’ in any bit position where there is an 

erasure in any line in the set of considered cache lines C except for erasures in bit i itself. 

Such a row can be used to unambiguously decode information bit di in the presence of the 

considered erasures. A “bad row” for an information bit di is one row of the OLS H-

matrix which has a ‘1’ in one or more bit positions where one or more erasures exist in 
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the set of considered cache lines C.  A small example is shown in Fig. 2 where the set of 

considered cache lines contains two cache lines where ‘E’ denotes a vulnerable cell 

which is treated as an erasure.  In this example, H-row1 shown in Fig. 2 would be a 

good row for any information bit because it does not intersect with any erasure bit.  H-

row2 intersects with the erasure in d1, so it would only be a good row for d1, but would be 

considered a bad row for all other information bits.  H-row3 intersects with erasures in 

both d3 and d5, so it would not be considered a bad row for all information bits. 

Each information bit is generated by a majority voter whose inputs correspond to 

rows in the H-matrix plus the information bit itself.  In a t-error correcting OLS code, 

each information bit is generated by a 2t+1 input majority voter.  By construction of the 

code, at most t inputs to the majority voter can be bad rows at any given time, so the 

voter will always produce a correct output as long as the number of errors in any cache 

line is t or less.  In the proposed approach, the goal is to tolerate e transient errors on top 

of the known erasures identified in the defect map.  This can generally be accomplished 

with much fewer than 2t+1 inputs to the voter, and hence some inputs can be disabled 

(i.e., masked off).  For information bit di, the set of good and bad rows can be identified 

for the considered erasures.  Inputs to the voter for di can be disabled provided the 

following relationship is maintained: 

“good rows” – “bad rows” ≥ 2(e+1)  (Condition 1) 

This ensures that if e transient errors occur which could cause e good rows to 

become bad rows, the voter will still produce a correct output even if di itself has an 

erasure.  For example, if e=1, then the voter needs a minimum of 5 inputs with 4 of 

them coming from good rows and one input coming from di itself.  In the worst case 

where di has an erasure and one row has a transient error, the 3 remaining good rows 

would out vote the two erroneous inputs.  Alternatively, a 7-input voter could be used 



 

 39

with inputs coming from 5 good rows, one bad row, and di itself.  Any size voter can be 

used provided the number of good rows is larger than the number of bad rows by a 

sufficient amount as per Condition 1. 

  d0 d1 d2 d3 d4 d5 d6 d7 

 

    line1 - E - - - E - - 

    line2 - - - E - - - - 
 

   H-row1 1 0 0 0 1 0 1 1 

   H-row2 0 1 1 0 1 0 0 1 

   H-row3 1 0 0 1 0 1 1 0 

 
Figure 4.1: Example where H-row1 good for all di, H-row2 good for only d1, and H-

row3 bad for all di 

 

  d0 d1 d2 d3 d4 d5 d6 d7 
 

     row1 G - - - G - G G 

     row2 - G B - B - - B 

     row3 B - - B - B B - 

 
Figure 4.2: Covering matrix for example in Fig. 4.1 

The problem of selecting a minimal set of rows so that the inputs to the voter for 

every information bit satisfies condition 1 for a given set of erasures can be formulated as 

a covering problem.  A covering matrix can be formed where each column corresponds 

to an information bit, and each row corresponds to a row in the H-matrix.  Each entry in 
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the matrix is a ‘G’ if the row is a good row for the corresponding information bit, a ‘B’ if 

it is a bad row, and a ‘-’ if the H-matrix row does not intersect with the information bit.  

The covering matrix for the small example in Fig. 4.1 is shown in Fig. 4.2.  There are 8 

information bits and three H-matrix rows.  Note that this is not a complete OLS code, 

but only a small fragment to illustrate how the covering matrix is formed. 

Once the covering matrix is formed, then a sufficient number of rows need to be 

selected to satisfy condition 1 for all information bits.  As long as the following 

condition is satisfied for a t-error correcting OLS code, there will always exist a solution 

to the covering problem, i.e., if nothing else, the solution where all rows in the OLS H-

matrix are included will work. 

(Max erasures in any line) + e ≤  t  (Condition 2) 

While the covering problem is NP-complete, good heuristic algorithms can be 

employed.  For example, a greedy procedure that first selects rows with the maximum 

number of G’s weighted by the difference between the G’s and B’s for each column 

could be used.  Rows are iteratively selected until a valid solution is found that satisfies 

Condition 1.  Other heuristic covering algorithms can be used as well [Vazirani 04].  

Another strategy would be to start with all rows selected and iteratively remove rows as 

long as condition 1 is satisfied.  

Note that the covering problem is solved w.r.t. a set of considered erasures.  

Ideally, the set of considered erasures (and hence the covering matrix) should be 

recomputed for each cache line and the covering problem for every cache line should be 

simultaneously solved.  However, the computation complexity for this is infeasible.  

One solution to simplifying the problem would be to consider all erasures in the cache as 

occurring in the same line which would allow forming a single covering matrix to solve.  

However, this would badly over constrain the problem. The proposed procedure is to first 
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consider only the erasures in the worst-case cache line (i.e., the cache line that has the 

most erasures).  Solve the covering problem for that, and then check if it is a valid 

solution for all other cache lines.  If not, then the erasures for one of the cache lines that 

it is not a solution for are added to the set of considered erasures, and the procedure is 

repeated.  This is done iteratively until a solution that works for all cache lines is found.  

Typically the worst-case cache lines are the limiting factor, so solving for them typically 

solves for all cache lines. 

4.4 IMPLEMENTATION 

One way to implement the proposed approach in [Datta 10] is as follows.  The 

maximum number of erasures that needs to be tolerated in any line of the cache to 

achieve a desired yield is statistically computed based on the expected memory cell 

defect probability, the word size of the cache, and the number of lines in the cache.  The 

OLS code is then selected so that it satisfies Condition 2 where the number of bits that 

the OLS code can correct is equal to the maximum number of erasures in any line plus 

the number of transient errors that are to be tolerated.  Let cfull be the number of check 

bits for the selected OLS code.  The maximum number of check bits that the proposed 

method will require to achieve the desired yield, cused, can then be determined through 

Monte Carlo simulation.  The memory is then designed so that it has cused redundant 

columns for each line to store the check bits.  For the application to low power caches 

(as described in [Christi 09]), the cache would be reconfigured in low power mode so that 

it could store cused check bits for each line. 

The full OLS code is implemented on the chip for generating all cfull check bits 

when writing to the cache, and for performing the decoding with all cfull check bits when 

reading from the cache.  Configuration circuitry is added so that the full OLS code can 
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be reduced down to cused check bits based on the configuration bits that are set for each 

chip after performing a memory characterization test as illustrated in Fig. 4.  There is 

one configuration bit for each of the cfull check bits for the code.  The configuration bit is 

a ‘1’ if that check bit is to be used, and is a ‘0’ if that check bit is to be disabled.  The 

configuration bits can either be stored with fuses if they are to be one-time programmed 

at manufacture time, or they can be stored in flip-flops if they are to be programmed by 

software each time the chip is powered up after performing a memory BIST.  Note that 

the switch networks in Fig. 4 can be simplified by placing constraints on the ways that 

cfull can be mapped to cused. 

The decoding process for each data bit is based on majority voting between the H-

matrix rows associated with the data bit.  The decoding process can be configured as 

shown in Fig. 5.  Since some H-matrix rows may not be included in the reduced code, so 

inputs to the voter associated with those rows are masked off with AND gates.  The 

majority voter is replaced with a threshold voter that gives a ‘1’ output if the number of 

inputs that are equal to ‘1’ is greater than or equal to the threshold T.  The value of T is 

configured so that it is equal to ⎡(number of non-masked inputs)/2⎤.  For example, if 

there are 7 inputs to the voter, but 2 of them are not part of the reduced code, then they 

are masked off, and the threshold of the voter is set to 3.  As long as no more than 2 out 

of the 5 non-masked voter inputs are correct, the output of the voter will be correct, so 

two errors can be tolerated.  The control lines in Fig. 5 are generated by control logic 

that decodes the configuration bits (as shown in Fig. 4). 
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Figure 4.3: Block Diagram of Scheme 
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Figure 4.4: Decoding Logic for Data Bit 

4.5 EXPERIMENTAL RESULTS 

Table 4.1 shows the results for a constant cache size of 64KB where simulations 

were performed for 1000 caches. For each of the caches, defect maps were generated 

with random injection of errors but at a specific bit-error rate. The existing OLS code for 

each cache was then customized based on its corresponding defect map. The first column 

shows the word size, the second column shows the bit error rate (probability that a bit is 

defective), and the next two columns show the average and maximum number of check 

bits required for tolerating all defects among 1000 caches using a conventional OLS 

code.  The last two columns show the same data using the proposed method where the 
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OLS code is customized for each cache for withstanding the effect of one transient error 

and all erasures. 

As can be seen from the results in Table 4.1, significant reduction in the number 

of check bits can be achieved.  The reduction becomes larger for higher bit-error 

probabilities and larger word sizes. The relatively less improvement for lower bit-error 

probabilities is due to the small number of erasures that are present. Also, smaller word 

sizes have less error correction capability.  An OLS code for 64 data bits can correct up 

to 4 errors, an OLS code for 256 data bits can correct up to 8 errors, and an OLS code for 

484 data bits can correct up to 11 errors. 

Table 4.1: Results for Different Bit-Error Rates and Word Sizes across Constant Cache 
Size of 64KB 

Check bits for 
conventional OLS 

Check bits for 
customized OLS 

Word 
Size 

(Bits) 

Bit-error 
Rate Avg Max Avg Max 
10-3 63 64 55 64 
10-4 41 64 35 56 64 
10-5 32 32 32 32 
10-3 177 224 138 157 
10-4 98 128 84 107 256 
10-5 66 102 64 68 
10-3 295 396 198 230 
10-4 143 176 117 139 484 
10-5 92 132 89 115 

Table 4.2 shows the results for different size caches with a word size of 256 bits, 

for tolerating one transient error on top of all the erasures present in the defect map.  As 

can be seen, with the proposed method, the maximum number of check bits that are 

required is reduced by 30% to 42% which allows more of the cache to be used for storing 

data. 
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Fig. 4.5 shows the distribution of check bits required per cache for the proposed 

scheme compared to conventional OLS.  If a threshold on the number of check bits is 

set at some point, it can be seen that the yield for proposed method would be much 

higher. 

Table 4.2: Results for Different Cache Sizes with Word Size of 256 Bits and Bit-Error 
Rate of 10-3 

Check bits for 
conventional OLS

Check bits for 
customized OLSCache Size 

(Bytes) Avg Max Avg Max 

Percentage 
reduction in 
Max. Check 

Bits 
16 KB 155 224 117 145 35.27 
32 KB 166 256 125 148 42.19 
64 KB 175 256 134 156 39.06 

128 KB 208 256 163 177 30.81 

 

 
Figure 4.5: Distribution of 484-bit Word, 64 KB Cache at 10-3 Bit-Error Rate 

4.6 CONCLUSIONS 

The check bit overhead for tolerating large numbers of marginal cells in ultra-low 

power caches is quite large.  The proposed method can be used to significantly reduce 
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the check bit overhead while still providing the same level of reliability especially when 

bit-error rates are higher. 

The idea of post-manufacture ECC customization can be applied to other 

problems to provide efficient fault tolerance when high defect rates are present. 
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Chapter 5: Designing a Fast and Adaptive Error Correction Scheme for 
Increasing the Lifetime of Phase Change Memories 

5.1 INTRODUCTION 

Memory technology scaling drives increasing density, increasing capacity, and 

falling price-capability ratios. Storage mechanisms in prevalent memory technologies 

require inherently un-scalable charge placement and control. This in turn has put memory 

scaling, a first-order technology objective, in jeopardy. Dynamic Random Access 

Memory (DRAM) has been used as the main memory in computer systems for decades 

due to its high-density, high-performance and low-cost. However, DRAM technologies, 

facing both scalability and power issues, will be difficult to scale down beyond 50nm 

[Zhang 09] due to various limitations associated with device leakages and retention time. 

Resistive memories, which arrange atoms within a cell and then measure the 

resistive drop through the atomic arrangement, are promising as a potentially more 

scalable replacement for DRAM and Flash. These technologies include spin-

torquetransfer magnetoresistive memory (STT-MRAM), ferroelectric memory (FRAM), 

memristors, and phase-change memories (PCM). Of these emerging technologies, PCM 

has received the most research attention in the architecture literature, as it is closest to 

commercialization [Numonyx 07], [Samsung 06]. 

Phase change memory (PCM) provides a non-volatile storage mechanism 

amenable to process scaling. Phase change memories function by alternating between low 

resistance crystalline and high resistance amorphous states. The thermally induced phase 

transition is brought about by injecting current into the storage material during writes. 

The state of the cell is then detected during reads with the high resistance state being 

interpreted as a zero and the low resistance state as one. PCM, relying on analog current 
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and thermal effects, does not require control over discrete electrons. As technologies 

scale and heating contact areas shrink, programming current will also scale linearly. PCM 

scaling mechanism has been demonstrated in a 20nm device prototype and is projected to 

scale to 9nm [Lee 09]. As a scalable DRAM alternative, PCM could provide a clear 

roadmap for increasing main memory density and capacity. 

However, one major challenge that needs to be addressed for PCM is its limited 

write endurance. PCM writes induce thermal expansion and contraction within the 

storage element, degrading injection contacts and limiting endurance to hundreds of 

millions of writes per cell at current processes. In current devices, a PCM cell typically 

supports around 107 writes [Ferreira 10]. Thus, PCM will wear-out quickly if used as a 

main memory.  

This is a significant limitation and a prime reason why PCM is not yet a ready 

substitute for DRAM main memory. Current PCM prototypes are not designed to 

mitigate PCM endurance. One major challenge in designing ECC for PCM based systems 

is that the number of cell failures is a monotonically increasing function of memory 

writes. In order to mitigate the time-dependant nature of failures, this work proposes a 

novel adaptive error correction technique that increases PCM endurance several times. 

The core idea here is to start with a nominal ECC, depending on experimentally 

determined error rates for PCM, and then adaptively boost the ECC strength to keep up 

with increasing failure rates of PCM [Datta 11a]. The dynamic control over the ECC is 

achieved by involving the underlying operating system (OS). The OS monitors the 

maximum number of errors corrected per PCM line and compares this against the 

strength of the ECC currently in place. When number of errors corrected on a memory 

line read approaches the capacity of the existing error code, the ECC strength is 

increased.   This can be done on the next reboot or done by writing main memory to 
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disk and reconfiguring the ECC when it is paged back in. The increase in ECC strength is 

achieved by breaking up a memory line into segments and then implementing separate 

ECC for each segment. Taken together, the combined effect of the segmented ECCs can 

correct up to tens of bits per memory line.  

Note that as the ECC of the memory is increased, the performance of the memory 

system gracefully degrades because more storage is taken up by check bits rather than 

data bits.  However, this strategy is much better than using a worst-case ECC which 

would give worst-case performance throughout the lifetime of the system.  The 

degradation comes in the form of reducing the effective size of a cache line since less 

data can be brought to the cache on each read operation to the PCM main memory.  

Note that if the cache itself is implemented with more reliable SRAM, then the number of 

check bits stored in the cache does not need to be increased.  So the total cache capacity 

remains the same.  If the cache line size is reduced, then the cache can store more lines.  

Strategies for designing the cache to accommodate graceful degradation of the line size is 

discussed as well as the performance impact which is highly dependent on the number 

and locality of memory references for an application. 

5.2 RELATED WORK 

Various approaches have been adopted to counter the limited write endurance of 

phase change memories. [Zhang 09] presents a hybrid PRAM/DRAM memory 

architecture that uses an OS level paging scheme to improve PRAM write performance 

and lifetime. They use a 7-error correcting BCH code for the ECC. BCH codes provide 

the desired level of reliability but require increasing number of cycles for correcting 

multi-bit errors [Lin 83]. [Xu 10] proposes a novel sensing mechanism for multi-level 
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PCM structures to address the reliability issue using either BCH or LDPC codes, for both 

of which the decoding time scale with number of errors being detected. 

In [Schechter 10], the authors propose to correct permanent errors in PCM 

systems by encoding the locations of failed cells into a table and assigning cells to 

replace them. They describe a new data structure which includes information about failed 

cells and a spare cell to substitute the failed cell. While this approach is attractive because 

of its low check-bit overhead, it suffers from the same deficiencies of other fixed error 

correction techniques.  

[Ferreira 10] shows how PCM writes can be minimized thereby increasing their 

lifetime. Note that this methodology could be used on top of the methodology proposed 

in this chapter. [Lee 09] uses buffer reorganization and partial write techniques to 

mitigate high energy PCM writes but improves PCM lifetime to only about 5.6 years. 

Traditional schemes like using spare rows and columns as well as bit interleaving, 

as shown in [Stapper 92], are likely to prove insufficient because of the prohibitively high 

error rate in PCM systems. 

While the PCM reliability issue has primarily been addressed from an architecture 

standpoint, solutions using novel ECC have yet to be fully explored. PCM differs from 

standard DRAM in a fundamental way in that the number of failures for a PCM cell is a 

function of time or more accurately a function of the number of writes/cell. The 

following section presents a detailed overview of the proposed scheme. 

5.3 OVERVIEW OF PROPOSED APPROACH 

Given that bit failure rates for phase change memories increase with continuous 

usage, the proposed approach of adaptively increasing the strength of the ECC to keep up 
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with the increasing failure rate is a good strategy. Note that this strategy requires 

involving the operating system (OS).  

ECC decoding and correction is performed by the memory controller after the 

data and check bits have been read from the memory chip and are in the processor core. 

The memory controller can be programmed as to what granularity of ECC is to be 

implemented. In the proposed method in [Datta 11a], every time the memory controller 

reads a memory line, the number of errors corrected is compared against a threshold 

which depends on the existing strength of the ECC in place. When the number of errors 

corrected for a particular read begins to approach the given threshold for the implemented 

ECC, the OS switches to a stronger ECC. This is accomplished by writing all of the main 

memory to disk and paging the memory back into physical memory with the stronger 

ECC. Note that this process of reconfiguring the ECC occurs very infrequently (on the 

order of months or years).  Another way to implement it would be to record the need for 

an ECC reconfiguration and then perform it on the next reboot. 

For the memory controller to be able to switch to an ECC of greater strength, the 

hardware has to be in place from before. Depending on up to how many levels the ECC 

will be stepped up, the full hardware to perform the necessary encoding-decoding will 

have to be implemented in the memory controller from the beginning. The memory 

controller will then choose which of the existing encoding-decoding schemes to employ 

using information received from the OS. 

Figure 5.1 shows a possible implementation of the scheme proposed in [Datta 

11a] that can switch between two modes of ECC. The OS signals when the memory 

controller needs to switch from the basic ECC scheme to the advanced scheme. In the 

general case where several different levels of ECC hardware are implemented, the OS 

will signal the memory controller when to step up the strength of ECC. 
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Figure 5.1: Adaptive ECC implementation 

Strengthening the ECC requires increasing the redundancy of the code, which 

means more check bits and fewer data bits can be stored in each line of the memory.  

When a cache miss occurs, fewer data words can be brought into the cache in each main 
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memory access.  For example, if a line in the memory initially contained 1024 data bits 

(i.e., 16 64-bit words), but then if the redundancy of the ECC is increased by 25%, then 

each line would only have 768 data bits (i.e., 12 64-bit words). 

Note that if the cache is implemented with more reliable SRAM rather than PCM 

technology, then it is not necessary to store as many check bits in the cache as is needed 

in a PCM main memory, nor is it necessary to scale up the number of check bits in the 

cache over time.  So as the number of check bits stored in the phase change main 

memory is increased over time, the total storage capacity of the cache is not affected.  

What is affected is the bandwidth coming into the cache.  However, the reduction in 

system performance would be very application dependent and would depend on the 

locality of the data and number of required memory accesses.  Experimental results are 

shown in Sec. 5.6 exploring the impact on performance. 

There are a number of different options for how the cache is implemented to 

accommodate a gracefully degrading line size coming from the main memory. 

One would be to have multiple valid bits for each original full size line in the 

cache. As the effective bandwidth is reduced when the ECC is strengthened in the phase 

change main memory, then each read from the main memory will only partially fill a line 

in the cache which would be indicated with the appropriate subset of valid bits for the 

line. If for example, the number of data bits was reduced by 50%, then each memory 

access would fill half of the cache line.  Another way to think about it is that a cache 

with 1024 lines where each line originally stored 16 words would be effectively 

transformed to a cache with 2048 lines where each line stores only 8 words.  The cache 

capacity doesn’t change, only the effective line size changes. 

Another way to implement the cache would be to adjust the associativity when the 

bandwidth from the PCM main memory is reduced. For example, a two-way set 
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associative cache could be converted to a four-way set associative cache when the line 

size is reduced in half. 

In either of these cases, the impact of reducing the line size will depend on the 

locality and frequency of memory references in the application. The reduction in line size 

is partially offset by the increase in either the associativity or the number of lines. 

This gives an overview of the approach which is general and could be used for 

any type of ECC. Next, one way for implementing the ECC with this scheme will be 

proposed which utilizes OLS codes. The advantage of using OLS codes over traditional 

multi-bit ECC such as BCH, LDPC codes, is that correction can be performed in a single 

clock cycle and the amount of time required is independent of the number of errors. 

5.4 ORTHOGONAL LATIN SQUARE CODES 

OLS codes, as the name suggest, are based on Latin squares. A Latin square 

[Hsiao 70] of order (size) m is an m x m square array of the digits 0, 1, . . . , m - 1, with 

each row and column a permutation of the digits 0,1, … , m - 1. Two Latin squares are 

orthogonal if, when one Latin square is superimposed on the other, every ordered pair of 

elements appears only once. 

As explained in [Datta 10], a t-error correcting majority decodable code works on 

the principle that 2t + 1 copies of each information bit are generated from 2t + 1 

independent sources. One copy is the bit itself received from memory or any transmitting 

device. The other 2t copies are generated from 2t parity relations involving the bit. By 

choosing a set of h Latin squares that are pair-wise orthogonal, one can construct a parity 

check matrix such that the number of 1’s in each column is 2t = h + 2. The orthogonality 

condition ensures that for any bit d, there exists a set of 2t parity check equations 

orthogonal on di, and thus makes the code self-orthogonal and one-step majority 
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decodable. One-step majority decoding is the fastest parallel decoding method. The t-

error correcting codes generated by OLS codes [Hsiao 70] have m2 data bits and 2tm 

check bits per word. 

5.5 ADAPTIVE ERROR CORRECTION CODE 

The principle behind the proposed method is that as the number of permanent 

errors keeps increasing over time, the ECC needs to be increased in strength. The trade 

off comes in the form of using up more of the memory for storing the ECC check bits.  

If for k data bits in a memory line, a t-error correcting code is used, then this is 

sufficient for all errors ≤ t. To mitigate more than t errors, more check bits are required.  

They cannot be added without reducing the number of data bits per line because for off-

chip main memory, the n-bit bus width transferring data and check bits from the memory 

to the processor is fixed such that 

n = data bits + check bits 

A straightforward approach for strengthening the ECC for an OLS code would be 

to simply directly increase t for the whole line.  However, rather than doing that, it is 

more efficient to divide the line into fragments and increase the number of errors 

corrected in each fragment as will be shown in this section.  

If an n-bit line consists of k data bits, it can be broken up into fragments each of 

size ki, and ri bits of ECC are separately implemented for each data fragment ki such that 
( ) nrk

i
ii =+∑

 

Consider the case where all k bits have a t-error correction OLS code 

implemented on it. Then the total number of bits, data plus check bits, would be 

ktk 2+
………………………..(5) 



 

 57

Now if the line is broken up into fragments, each of size ki = k/f and a ft / -

error correcting OLS code is implemented for each fragment. The total number of bits 

still remains 
( ){ } ktkffkftfk 22 +=∗+

 …(6) 

Although the total number of bits is the same in both the cases, (5) and (6), the 

error correction capacity is different for both. In case (5), the line can withstand all error 

patterns affecting up to t-bits. In case (6), each fragment can handle up to ft  errors. 

But overall the line can handle all error patterns affecting up to ft  bits in each 

fragment and some error patterns affecting up to ft  bits on the entire line. As is 

shown later in section 5.6, for randomly occurring errors, the property to correct some 

error patterns of size greater than the individual capacity of  the ECC in each fragment is 

significant and as simulations show, a fair number of error patterns can be tolerated using 

this property.  

So the overall idea is the following.  An initial code over across all n bits is 

selected to protect the PCM memory based on characterization tests.  Then during the 

course of operation as the number of failed cells accumulates over time, the strength of 

the ECC is increased by implementing ECC on increasingly smaller fragments. 

Consider a numerical example to illustrate the scheme. Consider a memory line 

with 256 data bits.  Initially a 3-error correcting OLS code is employed. Thus the total 

number of bits in the line is,  
35225632256 =∗∗+  

In an enhanced ECC mode, 25% of the memory line is used to store extra check 

bits. Hence the total number of data bits per line now becomes 192. The rest 

160192352 =−  
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bits are used for storing ECC. But instead of implementing ECC over the entire 

192 data bits at a time, the line is broken up into fragments of size 64, 64, 16, 16, 16 and 

16 bits. Next a 3-error correcting OLS code is implemented on each of the 64-bit 

fragments and a 2-error correcting OLS code on each of the 16-bit fragments, bringing 

the total number of bits to 
( ) ( ) 3524*4*2216283264 =∗++∗∗∗+

 

But now instead of being able to correct only 3-error patterns all 2-error patterns, 

99.97% of all 3-error patterns, 99.73% of all 4-error patterns and so on, up to a small 

fraction of 14-bit errors can be corrected. Thus the approach of breaking up a line into 

fragments and using separate ECC for each fragment is more efficient in terms of error 

correcting capacity than implementing a single ECC on the whole line. 

The selection of fragment sizes and their respective ECC bits is a combinatorial 

problem. In the cases where there is more than one possible way to break up a memory 

line into identical division of data and check bits, the combination which can correct 

maximum number of errors is chosen. 

5.6 EXPERIMENTAL RESULTS 

The bit error rate for a memory is defined as the number of failed bits divided by 

the total size of the memory (or in other words, the probability that each bit has failed).  

The bit error rate for PCM memories starts very small and grows over time as more cells 

fail. Figure 5.2 compares the proposed adaptive error correction scheme with the 

approach in [Zhang 09] where a 7-error BCH code is used and can tolerate bit error rates 

of up to 0.145%. The adaptive scheme discussed in this chapter was implemented with a 

line size of 1024 and starts with an initial correction capability of 3-errors.  As the OS 

detects that the bit error rate is exceeding the strength of the ECC, 25% of the data bits 
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are converted to check bits by dividing the memory into fragments and adding check bits 

for each fragment. This process is repeated as the error rate continues to increase.  As 

can be seen in Fig. 5.2, the proposed scheme can tolerate bit-error rates from 0.08% to a 

significantly higher 1.2%. The simulation for Fig. 5.2 was done on a memory of size 

128MB with random injection of errors.  

The error correction technique described in [Schechter 10] needs a mention here 

being similar to that of [Zhang 09]. In [Schechter 10] the Erroc Correction Pointer (ECP) 

data structure would hold the location of the failed cell and a spare cell to substitute for 

the failed one. Several such data structures would be maintained per line. ECP requires 1 

full bit, n replacement bits, and n pointers large enough to address the original data bits. 

Thus the fractional space overhead S (ECPn ) for a row width d is 

d
dnnS ECPn

2log..1)( ++
=  

Although botht these approaches, [Zhang 09] and [Schechter 10], using similar 

number of check bits, are very efficient when it comes to handling a fixed number of 

defects, neither of them would be capable of mitigating the growing number of defects as 

is common in phase change memories. This is where the advantage of our adaptive 

scheme, as shown in Fig. 5.2,  becomes most prominent against other fixed error 

correction schemes  
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Figure 5.2: Adaptive fault tolerance 

 
 

 
Figure 5.3: Percentage of operational cache lines versus number of errors injected (out of 

100,000 experiments) 
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Table 5.1 shows how the error tolerance varies with size of the memory as the 

number of check bits is increased. For this experiment, random errors were injected into 

memories of various sizes. As more of the memory is used up to store extra check bits, 

the error tolerance grows alongside, reaching as high as 10-2 in the extreme where 75% of 

the memory has been used up to store extra check bits. For most applications, acceptable 

error tolerance is around 10-6 which shows that our proposed approach is capable of 

handling prohibitively high number of errors if necessary.  

Table 5.1: Error Tolerance (no. of errors / no. of bits * 100) for varying line sizes 

Fraction of Memory Used for Storing Extra Check-bits Memory Size 
0.0 0.25 0.5 0.75 

128MB 0.008 0.015 0.213 1.190 
256MB 0.006 0.042 0.205 1.117 

1GB 0.005 0.026 0.154 0.989 
4GB 0.003 0.020 0.125 0.916 

The monotonic decrease in tolerance with increasing size can be explained by the 

fact that as the number of lines increase, the difference  

n * E[one line] ~ E[n lines] 

is likely to increase, where n is the number of lines, E[one line] is expected error 

tolerance of a single line and E[n lines] is the error tolerance of n lines. This mirrors a 

likely scenario where errors will accumulate faster on some lines than others unless the 

data read/write pattern is absolutely random, which is not the usual case due to data 

locality. 

Another aspect of evaluating the proposed scheme is to study the distribution of 

error tolerance in each line for different ECC configurations. Figure 5.3 shows results for 

a 1024 bit line in which the initial stating point is a 3-bit error correcting ECC and then 
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25% of the data bits were converted to check bits, and then 50%, and finally 75%. Errors 

were injected at random, and Fig. 5.3 shows the percentage of lines that have not failed 

across 100,000 experiments. The x-axis corresponds to the number of errors injected in 

the line, and the y-axis corresponds to the percentage of lines that were able to tolerate 

that many errors for different configurations of the ECC. Results are shown for both the 

ECC scheme described in Sec. 5.5 which breaks up the line into fragments and 

implements ECC separately for each fragment, and the conventional case where the ECC 

was implemented across all the data bits at once.  As can be seen from the results, the 

fragmented ECC scheme can easily tolerate more errors than the conventional method. 

The former is able to tolerate 20% more errors per line at 90% probability, than the 

conventional method, when half the line is used for storing check bits. When 3/4th of the 

line is used for storing check bits, the fragmented scheme can tolerate 33% more errors at 

90% probability. 

Figures 5.4 and 5.5 show the effect of reducing memory line size to accommodate 

extra check bits. One way to implement this, as was described in Sec. 5.3, is to adjust the 

associativity and line size of the cache. In both Figs. 5.4 and 5.5, the y-axis plots cycles 

per instruction (CPI) for a set of SPEC2006 [Spec 06] benchmarks across different cache 

configurations defined as follows: 

cache_config1 – line size 512B, associativity 4 
cache_config2 – line size 256B, associativity 8 
cache_config3 – line size 128B, associativity 16

The CPI was calculated assuming single cycle for all non-memory instructions 

and five cycles [Wulf 95] for instructions that caused a cache miss and needed to access 

main memory. As can be seen from the figures, there is little degradation on performance 
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for reduced line sizes and increasing associativity. Moreover, the fact that these changes 

are expected at an interval of every few years lessens the performance impact. 

The simulations were done using Pin [Pin 04], a dynamic instrumentation tool. 

Pin was used to obtain memory traces of the benchmarks for various cache 

configurations. These memory traces were then used as an input to the DineroIV [Dinero 

IV] cache simulator to generate cache miss rates. 

 

 
Figure 5.4: Variation of CPI for different cache configurations for four different 

SPEC2006 benchmarks for 64KB cache 
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Figure 5.5: Variation of CPI for different cache configurations across different cache 

sizes for the SPEC2006 benchmark bzip2 

5.7 CONCLUSIONS 

This chapter described an adaptive error tolerance scheme that can extend to 8x 

more error tolerance than that of [Zhang 09] for similar initial redundancy.  As the PCM 

memory degrades to the point where it exceeds the capability of the method in [Zhang 

09] to continue operation, the proposed method can continue operation by adaptively 

increasing the ECC. The performance of the memory will gracefully degrade due to 

reducing the effective line size for each memory read to service a cache miss.  However, 

the impact of this can be minimized by careful cache design since the total cache storage 

capacity as a whole is not impacted.  



 

 65

 

Chapter 6: Conclusions and Future Work 

6.1 CONCLUSIONS 

In this dissertation we have looked at various approaches to efficiently detect and 

correct online errors in memories. Memories are the densest structures in modern day 

microprocessors and also occupy the highest percentage of real estate on a chip. Thus it is 

absolutely essential that online fault tolerance in memories be handled with minimal 

overhead. That has been the common goal in every different approach we have discussed 

in this dissertation – how to get rid of that extra redundancy in the error correction code 

and make it more efficient.  

We began in chapter 2 by presenting an extremely low-cost method that utilizes 

unused spare columns from the memory repair process to increase reliability of the 

existing code. We store additional check bits in the leftover spare columns and show 

considerable improvement in the mis-correction probabilities of SEC-DED (Single Error 

Correcting-Double Error Detecting) and SEC-DAEC (Single Error Correcting-Double 

Adjacent Error Correcting) code. This is achieved at the cost of very little extra hardware 

making this an attractive method. Chapter 3 looks at transforming multi-bit correcting 

OLS (Orthogonal Latin Square) code into burst error correcting codes. The motivation 

for this approach arises from the fact that most multi-bit errors are likely to affect 

adjacent bits. As before, our goal was to achieve the desired properties of burst error 

correction with minimal number of extra check bits. As our results show the check bit 

overhead actually goes down with increasing code size. 

In chapter 4 we work towards making caches more resilient to errors at low 

voltages. Ultra low voltage caches, while very attractive from a power saving point of 

view, suffers from the increased failure rates that manifest at lower voltages, thereby 
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necessitating stronger, multi-bit correcting error codes with high redundancy. In our work 

we show that customizing the error code on a chip by chip basis leads to considerable 

savings in terms of check bit overhead. The customization is done with the help of a 

defect map – a list of cells vulnerable at lower voltages, generated at manufacture time by 

memory characterization tests. Our choice of ECC was OLS codes, because of its ability 

to correct multiple errors in a single cycle and more importantly for the modular nature of 

the code which allows reduction in check bits with relative ease. 

Finally in chapter 5 we propose an adaptive error correction scheme for phase 

change memories, a new generation of memory elements. Phase change memories suffer 

from limited write endurance, thus needing stronger ECC with high redundancy. We 

discuss a novel method where by involving the operating system, the strength of the ECC 

is increased in steps in conjunction with the failure rate. This leads to a higher lifetime 

expectancy as well as graceful use of memory capacity to store extra check bits. 

6.2 FUTURE WORK 

As we move deeper into technological nodes, memories are likely to grow denser 

and more complex. This means that seamless operation of systems would require that 

online error correction/detection of memories is handled with minimum overhead and 

latency. This leaves ample room for improvement in terms of error correction codes. 

In relation to the work presented in chapter 2, one possible extension could be to 

look at ways of making use of partially defective columns. Instead of discarding them 

completely during memory repair, if extra check bits can be stored in the good cells to 

improve system reliability. 
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For our work reducing check bit overhead by customization of OLS code, future 

work could look at other possible codes like BCH or LDPC, which are inherently less 

redundant than OLS codes. 

For phase change memories, unless an alternate work around is found for the 

limited write endurance (possibly at the device level), error correction will have to 

handled at the system level. More approaches involving the operating system could look 

to explore the unique fault model of PCM systems, where error rate is always 

monotonically increasing. Ideas targeted towards multi-bit PCM systems where the fault 

model is usually asymmetric between different threshold levels should also be 

investigated. 
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