
Improving Memory ECC By Exploiting

Unused Spare Columns

Rudrajit Datta and Nur A. Touba

Computer Engineering Research Center

Dept. of Electrical and Computer Engineering

University of Texas at Austin

Introduction

 Factors leading to memory errors

• Transient errors due to radiation, power supply noise

• Correction using ECC

 Memory repair methods

• Spare columns/rows

 Need

• Repairing defective cells increases yield greatly

Previous Work

 SEC-DED

• Most commonly used

• Drawbacks

− Only detect but not correct double errors

− Mis-corrects triple errors

• Reduces reliability of code

Previous Work

 SEC-DAEC [Avijit 07]

• SEC and corrects adjacent double errors

• Adjacent double errors more likely than double errors

• 1-5% of single event upsets (SEUs) cause multiple-bit errors

(MBUs)

• Drawbacks

− Mis-corrects non-adjacent double bit errors

 Use spare rows/columns [Han 05]

• Map defective cells to the spare rows/columns

• Generally memories have leftover spare rows/columns after the

repair process

Linear Block Codes

=

H
CT

Syndrome

=

CT
H

Syndrome

Linear Block Codes

 H-matrix chosen such that

• for all single and double bit error syndromes are unique

• for SEC-DAEC adjacent double-bit syndromes are unique from

− single-bit errors

− double-bit errors

 Hsiao code [Hsiao 70]

• All columns unique and contains odd number of 1s

• SEC-DED

Spare Row/Column Allocation

 Spare cells arranged into rows and/or columns

 Used to mitigate small number of defects

 Optimal allocation of spare rows and columns NP complete [Kuo 86]

 Previous algorithms

• Greedy algorithm – repair most [Tarr 84]

• Branch and bound

• Exhaustive search – for smaller array sizes

 Enhances memory yield

Proposed Scheme

 Unused spare columns

 Extra check bits stored in unused spare columns

 Extra check bits aid in correction and detection

Spare

ColumnMemory

Proposed Scheme

 Goal

• Implement SEC-DED and reduce triple error mis-correction

• Implement SEC-DAEC and reduce non-adjacent double error mis-

correction

 Procedure

• Add extra check bits

• Increases search space for an optimal code that meets above

constraints

• Extra check bits stored in unused spare columns

• Worst case, no unused spare columns, code should still be SEC-

DED/SEC-DAEC

• Start with a SEC-DED/SEC-DAEC code and build on top of it

Proposed Scheme

• Each extra row added by

− exhaustive search of entire space (for smaller codes)

− random search (bigger codes)

• Not much difference between random and/or exhaustive search

• Number of added check bits (extra rows to the H-matrix) depends

on number of spares leftover after repair process

• Rows are added one at a time in a greedy fashion

Triple Error Mis-correction

Original H-matrix

 Mis-corrected triple errors = 28

Modified H-matrix

 Mis-corrected triple errors = 12

Triple Error Mis-correction

Triple error

mis-correction

Unique syndrome

XOR

XOR

Original H-matrix

Triple Error Mis-correction

No triple error

mis-correction

XOR

Modified H-matrix

Non-adjacent Double Error

Mis-correction
Original H-matrix Modified H-matrix

Non-adjacent Double Error

Mis-correction
Original H-matrix

XOR

XOR

Non-adjacent double error

mis-correction

No non-adjacent

double error

mis-correction
XOR

=

Non-adjacent Double Error

Mis-correction
Modified H-matrix

XOR

No non-adjacent double error

mis-correction

XOR

Block Diagram – 1 Spare Column

Check Bit Generator

Spare

ColumnMemory

Data Bits

Syndrome Generator

Correction Logic

&

+
Error

Detected

Spare Used

for Repair

0 1

1 0

Bit Slice of Correction Logic

Correct Bit di

when S = hi = [101011]T

&

+

Spare Used

for Repair

s0 s1 s2 s3 s4 s5

XOR

di

Corrected di

Results

Data

Bits

[Hsiao 70] [Richter 08] Proposed Method

1 Spare Column 2 Spare Columns 3 Spare Columns

XORs Miscorrected XORs Miscorrected XORs Miscorrected XORs Miscorrected XORs Miscorrected

16 48 1,000
(64.9%)

- - 58 448
(25.3%)

70 176
(8.7%)

76 52
(2.3%)

32 96 5,452
(59.6%)

115 4, 284
(46.8%)

118 2,548
(25.8%)

129 1,200
(11.3%)

138 588
(5.1%)

64 181 33,568
(56.2%)

250 26,616
(44.6%)

265 16,176
(26.0%)

308 9,084
(14.1%)

351 7,392
(11.0%)

Comparison of Triple-Error Mis-correction Probability for SEC-DED codes

Results

Data

Bits

[Dutta 07] [Richter 08] Proposed Method

1 Spare Column 2 Spare Columns 3 Spare Columns

XORs Miscorrected XORs Miscorrected XORs Miscorrected XORs Miscorrected XORs Miscorrected

16 48 118 (56.2%) - - 55 68 (29.4%) 62 33 (13.0%) 67 24 (8.7%)

32 96 379 (53.4%) 115 274 (39.0%) 117 203 (27.4%) 130 108 (13.8%) 140 72 (8.8%)

64 224 1316 (53.0%) 250 864 (34.8%) 263 688 (26.9%) 306 469 (17.8%) 353 395 (14.6%)

Comparison of Non-Adjacent Double-Error Mis-correction Probability

for SEC-DAEC codes

Results

Data

Bits

Triple-Error Miscorrection Probability
Adding 1 Spare Row

Non-Adjacent Double-Error Miscorrection
Probability Adding 1 Spare Row

Random Search Exhaustive Search Random Search Exhaustive Search

XORs Miscorrected XORs Miscorrected XORs Miscorrected XORs Miscorrected

16 56 453 (25.5%) 58 448 (25.3%) 56 72 (31.2%) 55 68 (29.4%)

18 63 352 (13.5%) 63 352 (13.5%) 65 51 (17.0%) 65 51 (17.0%)

20 76 496 (15.1%) 76 496 (15.1%) 73 65 (17.2%) 73 65 (17.2%)

Comparison of Random and Exhaustive Searches for Obtaining Optimal Result

Conclusion

 Scheme for improving reliability of SEC-DED/SEC-DAEC code

 Utilizes already existing resources

 In presence of both spare rows and columns, spare rows may be

used first for the repair process

 Save more spare columns for implementing the above scheme

