
Improving Memory ECC By Exploiting

Unused Spare Columns

Rudrajit Datta and Nur A. Touba

Computer Engineering Research Center

Dept. of Electrical and Computer Engineering

University of Texas at Austin

Introduction

 Factors leading to memory errors

• Transient errors due to radiation, power supply noise

• Correction using ECC

 Memory repair methods

• Spare columns/rows

 Need

• Repairing defective cells increases yield greatly

Previous Work

 SEC-DED

• Most commonly used

• Drawbacks

− Only detect but not correct double errors

− Mis-corrects triple errors

• Reduces reliability of code

Previous Work

 SEC-DAEC [Avijit 07]

• SEC and corrects adjacent double errors

• Adjacent double errors more likely than double errors

• 1-5% of single event upsets (SEUs) cause multiple-bit errors

(MBUs)

• Drawbacks

− Mis-corrects non-adjacent double bit errors

 Use spare rows/columns [Han 05]

• Map defective cells to the spare rows/columns

• Generally memories have leftover spare rows/columns after the

repair process

Linear Block Codes

=

H
CT

Syndrome

=

CT
H

Syndrome

Linear Block Codes

 H-matrix chosen such that

• for all single and double bit error syndromes are unique

• for SEC-DAEC adjacent double-bit syndromes are unique from

− single-bit errors

− double-bit errors

 Hsiao code [Hsiao 70]

• All columns unique and contains odd number of 1s

• SEC-DED

Spare Row/Column Allocation

 Spare cells arranged into rows and/or columns

 Used to mitigate small number of defects

 Optimal allocation of spare rows and columns NP complete [Kuo 86]

 Previous algorithms

• Greedy algorithm – repair most [Tarr 84]

• Branch and bound

• Exhaustive search – for smaller array sizes

 Enhances memory yield

Proposed Scheme

 Unused spare columns

 Extra check bits stored in unused spare columns

 Extra check bits aid in correction and detection

Spare

ColumnMemory

Proposed Scheme

 Goal

• Implement SEC-DED and reduce triple error mis-correction

• Implement SEC-DAEC and reduce non-adjacent double error mis-

correction

 Procedure

• Add extra check bits

• Increases search space for an optimal code that meets above

constraints

• Extra check bits stored in unused spare columns

• Worst case, no unused spare columns, code should still be SEC-

DED/SEC-DAEC

• Start with a SEC-DED/SEC-DAEC code and build on top of it

Proposed Scheme

• Each extra row added by

− exhaustive search of entire space (for smaller codes)

− random search (bigger codes)

• Not much difference between random and/or exhaustive search

• Number of added check bits (extra rows to the H-matrix) depends

on number of spares leftover after repair process

• Rows are added one at a time in a greedy fashion

Triple Error Mis-correction

Original H-matrix

 Mis-corrected triple errors = 28

Modified H-matrix

 Mis-corrected triple errors = 12

Triple Error Mis-correction

Triple error

mis-correction

Unique syndrome

XOR

XOR

Original H-matrix

Triple Error Mis-correction

No triple error

mis-correction

XOR

Modified H-matrix

Non-adjacent Double Error

Mis-correction
Original H-matrix Modified H-matrix

Non-adjacent Double Error

Mis-correction
Original H-matrix

XOR

XOR

Non-adjacent double error

mis-correction

No non-adjacent

double error

mis-correction
XOR

=

Non-adjacent Double Error

Mis-correction
Modified H-matrix

XOR

No non-adjacent double error

mis-correction

XOR



Block Diagram – 1 Spare Column

Check Bit Generator

Spare

ColumnMemory

Data Bits

Syndrome Generator

Correction Logic

&

+
Error

Detected

Spare Used

for Repair

0 1

1 0

Bit Slice of Correction Logic

Correct Bit di

when S = hi = [101011]T

&

+

Spare Used

for Repair

s0 s1 s2 s3 s4 s5

XOR

di

Corrected di

Results

Data

Bits

[Hsiao 70] [Richter 08] Proposed Method

1 Spare Column 2 Spare Columns 3 Spare Columns

XORs Miscorrected XORs Miscorrected XORs Miscorrected XORs Miscorrected XORs Miscorrected

16 48 1,000
(64.9%)

- - 58 448
(25.3%)

70 176
(8.7%)

76 52
(2.3%)

32 96 5,452
(59.6%)

115 4, 284
(46.8%)

118 2,548
(25.8%)

129 1,200
(11.3%)

138 588
(5.1%)

64 181 33,568
(56.2%)

250 26,616
(44.6%)

265 16,176
(26.0%)

308 9,084
(14.1%)

351 7,392
(11.0%)

Comparison of Triple-Error Mis-correction Probability for SEC-DED codes

Results

Data

Bits

[Dutta 07] [Richter 08] Proposed Method

1 Spare Column 2 Spare Columns 3 Spare Columns

XORs Miscorrected XORs Miscorrected XORs Miscorrected XORs Miscorrected XORs Miscorrected

16 48 118 (56.2%) - - 55 68 (29.4%) 62 33 (13.0%) 67 24 (8.7%)

32 96 379 (53.4%) 115 274 (39.0%) 117 203 (27.4%) 130 108 (13.8%) 140 72 (8.8%)

64 224 1316 (53.0%) 250 864 (34.8%) 263 688 (26.9%) 306 469 (17.8%) 353 395 (14.6%)

Comparison of Non-Adjacent Double-Error Mis-correction Probability

for SEC-DAEC codes

Results

Data

Bits

Triple-Error Miscorrection Probability
Adding 1 Spare Row

Non-Adjacent Double-Error Miscorrection
Probability Adding 1 Spare Row

Random Search Exhaustive Search Random Search Exhaustive Search

XORs Miscorrected XORs Miscorrected XORs Miscorrected XORs Miscorrected

16 56 453 (25.5%) 58 448 (25.3%) 56 72 (31.2%) 55 68 (29.4%)

18 63 352 (13.5%) 63 352 (13.5%) 65 51 (17.0%) 65 51 (17.0%)

20 76 496 (15.1%) 76 496 (15.1%) 73 65 (17.2%) 73 65 (17.2%)

Comparison of Random and Exhaustive Searches for Obtaining Optimal Result

Conclusion

 Scheme for improving reliability of SEC-DED/SEC-DAEC code

 Utilizes already existing resources

 In presence of both spare rows and columns, spare rows may be

used first for the repair process

 Save more spare columns for implementing the above scheme

