Improving Memory ECC By Exploiting Unused Spare Columns

Rudrajit Datta and Nur A. Touba

Computer Engineering Research Center Dept. of Electrical and Computer Engineering University of Texas at Austin

Introduction

Factors leading to memory errors

- Transient errors due to radiation, power supply noise
- Correction using ECC
- Memory repair methods
 - Spare columns/rows
- Need
 - Repairing defective cells increases yield greatly

Previous Work

> SEC-DED

- Most commonly used
- Drawbacks
 - Only detect but not correct double errors
 - Mis-corrects triple errors
- Reduces reliability of code

Previous Work

SEC-DAEC [Avijit 07]

- SEC and corrects adjacent double errors
- Adjacent double errors more likely than double errors
- 1-5% of single event upsets (SEUs) cause multiple-bit errors (MBUs)
- Drawbacks
 - Mis-corrects non-adjacent double bit errors

Use spare rows/columns [Han 05]

- Map defective cells to the spare rows/columns
- Generally memories have leftover spare rows/columns after the repair process

Linear Block Codes

Linear Block Codes

- H-matrix chosen such that
 - for all single and double bit error syndromes are unique
 - for SEC-DAEC adjacent double-bit syndromes are unique from
 - single-bit errors
 - double-bit errors
- Hsiao code [Hsiao 70]
 - All columns unique and contains odd number of 1s
 - SEC-DED

Spare Row/Column Allocation

- Spare cells arranged into rows and/or columns
- Used to mitigate small number of defects
- Optimal allocation of spare rows and columns NP complete [Kuo 86]
- Previous algorithms
 - Greedy algorithm repair most [Tarr 84]
 - Branch and bound
 - Exhaustive search for smaller array sizes
- Enhances memory yield

Proposed Scheme

- Unused spare columns
- Extra check bits stored in unused spare columns
- Extra check bits aid in correction and detection

Proposed Scheme

Goal

- Implement SEC-DED and reduce triple error mis-correction
- Implement SEC-DAEC and reduce non-adjacent double error miscorrection
- Procedure
 - Add extra check bits
 - Increases search space for an optimal code that meets above constraints
 - Extra check bits stored in unused spare columns
 - Worst case, no unused spare columns, code should still be SEC-DED/SEC-DAEC
 - Start with a SEC-DED/SEC-DAEC code and build on top of it

Proposed Scheme

- Each extra row added by
 - exhaustive search of entire space (for smaller codes)
 - random search (bigger codes)
- Not much difference between random and/or exhaustive search
- Number of added check bits (extra rows to the H-matrix) depends on number of spares leftover after repair process
- Rows are added one at a time in a greedy fashion

Triple Error Mis-correction

Original H-matrix

Modified H-matrix

$$H = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Mis-corrected triple errors = 28

Mis-corrected triple errors = 12

Triple Error Mis-correction

Non-adjacent Double Error Mis-correction

Original H-matrix

	1	1	0	1	0	0	0	0
	0	1	1	0	1	0	0	0
H =	1	0	1	0	0	1	0	0
	1	0	1	0	0	0	1	0
	0	1	0	0	0	0	0	1

Modified H-matrix

H =	1	1	0	1	0	0	0	0	0
	0	1	1	0	1	0	0	0	0
	1	0	1	0	0	1	0	0	0
	1	0	1	0	0	0	1	0	0
	0	1	0	0	0	0	0	1	0
	1	0	0	0	0	0	0	0	1

Non-adjacent Double Error Mis-correction Original H-matrix 0 1 0 0 0 0 1 0 1 0 0 0 0 XOR 0 0 1 0 0 1 H =0 0 1 1 0 0 1 0 0 0 1 S =0 0 0 1 0 No non-adjacent double error 1 mis-correction XOR XOR 1 1 1 S == S =1 Non-adjacent double error mis-correction 1 0

Non-adjacent Double Error Mis-correction

Block Diagram – 1 Spare Column

Bit Slice of Correction Logic

Results

Comparison of Triple-Error Mis-correction Probability for SEC-DED codes

Data Bits	a [Hsiao 70]		[Hsiao 70] [Richter 08]				Proposed Method						
DIUS					1 Spare Column		2 Spare Columns		3 Spare Columns				
	XORs	Miscorrected	XORs	Miscorrected	XORs	Miscorrected	XORs	Miscorrected	XORs	Miscorrected			
16	48	1,000	-	-	58	448	70	176	76	52			
		(64.9%)				(25.3%)		(8.7%)		(2.3%)			
32	96	5,452	115	4, 284	118	2,548	129	1,200	138	588			
		(59.6%)		(46.8%)		(25.8%)		(11.3%)		(5.1%)			
64	181	33,568	250	26,616	265	16,176	308	9,084	351	7,392			
		(56.2%)		(44.6%)		(26.0%)		(14.1%)		(11.0%)			

Comparison of Non-Adjacent Double-Error Mis-correction Probability for SEC-DAEC codes

Data	[Dutta 07]		[F	Richter 08]		Proposed Method						
Bits												
					1 Spare Column		2 Spare Columns		3 Spare Columns			
	XORs	Miscorrected	XORs	Miscorrected	XORs	Miscorrected	XORs	Miscorrected	XORs	Miscorrected		
16	48	118 (56.2%)	-	-	55	68 (29.4%)	62	33 (13.0%)	67	24 (8.7%)		
32	96	379 (53.4%)	115	274 (39.0%)	117	203 (27.4%)	130	108 (13.8%)	140	72 (8.8%)		
64	224	1316 (53.0%)	250	864 (34.8%)	263	688 (26.9%)	306	469 (17.8%)	353	395 (14.6%)		

Results

Comparison of Random and Exhaustive Searches for Obtaining Optimal Result

Data	Triț	ole-Error Misco Adding 1 S	rrectior Spare R	n Probability ow	Non-Adjacent Double-Error Miscorrection Probability Adding 1 Spare Row				
Bits	Ran	dom Search	Exha	Exhaustive Search		idom Search	Exhaustive Search		
	XORs	Miscorrected XORs Miscorrected		XORs	Miscorrected	XORs	Miscorrected		
16	56	453 (25.5%)	58	448 (25.3%)	56	72 (31.2%)	55	68 (29.4%)	
18	63	352 (13.5%)	63	352 (13.5%)	65	51 (17.0%)	65	51 (17.0%)	
20	76	496 (15.1%)	76	496 (15.1%)	73	65 (17.2%)	73	65 (17.2%)	

Conclusion

- Scheme for improving reliability of SEC-DED/SEC-DAEC code
- Utilizes already existing resources
- In presence of both spare rows and columns, spare rows may be used first for the repair process
- Save more spare columns for implementing the above scheme