
Exploiting Unused Spare Columns to Improve Memory ECC

Rudrajit Datta and Nur A. Touba

Computer Engineering Research Center
Department of Electrical and Computer Engineering

University of Texas, Austin, TX 78712

Abstract

Spare columns are often included in memories for the

purpose of allowing for repair in the presence of defective
cells or bit lines. In many cases, the repair process will
not use all spare columns. This paper proposes an
extremely low cost method to exploit these unused spare
columns to improve the reliability of the memory by
enhancing its existing error correcting code (ECC).
Memories are generally protected with single-error-
correcting, double-error-detecting (SEC-DED) codes
using the minimum number of check bits. In the proposed
method, unused spare columns are exploited to store
additional check bits which can be used to reduce the
miscorrection probability for triple errors in SEC-DED
codes or non-adjacent double errors in single adjacent
error correcting codes (SEC-DAEC) codes.

1. Introduction

Memories are very dense structures that are especially
susceptible to defects. In most cases, memories take up a
very large percentage of a chip’s area. In order to
improve yield, spare rows and columns are often included
in a memory to allow for repairing the memory [Kim 98],
[Zorian 03]. Defective cells, bit lines, or word lines, can
be repaired by replacing the defective rows or columns
with the spares. While the worst-case most defective
memories on the tail end of the statistical curve may use
all of the spare resources, most memories will have
unused spare resources after the repair process. This
paper proposes a methodology to exploit these unused
resources, when available, to improve the reliability of the
memory by enhancing its existing error coding.

Transient errors due to radiation, power supply noise,
etc., can cause bit-flips in a memory. To protect the data
integrity of the memory, an error correcting code (ECC) is
generally employed. The most common error correcting
code that is used is single-error-correcting, double-error-
detecting (SEC-DED) codes [Hamming 50], [Hsiao 70].
These codes can correct single bit errors in any word of
the memory and can detect double bit errors. These codes
require storing additional check bits in the memory. For a
memory with 32 bit data words, 7 check bits are required.

So the memory would need 39 columns for each logical
word plus any additional spare columns that are included
for repair. In some cases, check bits are used along with
spare rows and columns to get combined fault-tolerance.
In [Stapper 92], interleaved words with redundant word
lines and bit lines are used in addition to the check bits on
each word.

Some previous work has been done to enhance the
reliability of memories without increasing the size of the
memory. One limitation of SEC-DED codes is that if a
triple-bit error occurs, it may not be detected, but rather it
may be miscorrected as if it were a single bit error
[Hsiao 70]. The probability of miscorrection for triple bit
errors for conventional SEC-DED codes for 32 bit data
words is around 60% or more. A code with r check bits
can protect up to 2r-1-r data bits. Most memories will not
have exactly that number of data bits, and hence
shortened codes must be used. For shortened codes, there
is a degree of freedom in selecting the set of columns in
the parity-check matrix (H-matrix). In [Richter 08], a
search procedure was described for selecting the columns
in an H-matrix for a shortened code that minimizes the
miscorrection probability for triple bit errors. For
example, they found an SEC-DED code for 32 bit data
words which has a triple error miscorrection probability
of 47%. This increases the reliability of the memory at no
additional cost other than a few extra XOR gates in the
checker.

Another limitation of SEC-DED codes is that they can
only detect, but not correct, double-bit errors. Studies
have shown that 1-5% of single event upsets (SEUs) can
cause multiple-bit errors (MBUs) [Satoh 00], [Makihara
00], [Kawakami 04]. Most MBUs will affect nearby
cells. In [Dutta 07], it was shown that by carefully
selecting and ordering the columns in the H-matrix for an
SEC-DED code, it is possible to correct all adjacent
double-bit errors in addition to correcting all single bit
errors thereby creating an SEC-DAEC code. Since the
most likely double-bit errors will be adjacent, this is very
useful. The limitation of SEC-DAEC codes is that they
may not detect all non-adjacent double-bit errors. The
SEC-DAEC code reported in [Dutta 07] for 32 bit data
words has a 51% double-bit miscorrection probability. In

2009 27th IEEE VLSI Test Symposium

1093-0167/09 $25.00 © 2009 IEEE

DOI 10.1109/VTS.2009.52

49

2009 27th IEEE VLSI Test Symposium

1093-0167/09 $25.00 © 2009 IEEE

DOI 10.1109/VTS.2009.52

49

2009 27th IEEE VLSI Test Symposium

1093-0167/09 $25.00 © 2009 IEEE

DOI 10.1109/VTS.2009.52

49

2009 27th IEEE VLSI Test Symposium

1093-0167/09 $25.00 © 2009 IEEE

DOI 10.1109/VTS.2009.52

49

2009 27th IEEE VLSI Test Symposium

1093-0167/09 $25.00 © 2009 IEEE

DOI 10.1109/VTS.2009.52

49

2009 27th IEEE VLSI Test Symposium

1093-0167/09 $25.00 © 2009 IEEE

DOI 10.1109/VTS.2009.52

47

2009 27th IEEE VLSI Test Symposium

1093-0167/09 $25.00 © 2009 IEEE

DOI 10.1109/VTS.2009.52

47

2009 27th IEEE VLSI Test Symposium

1093-0167/09 $25.00 © 2009 IEEE

DOI 10.1109/VTS.2009.52

47

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 25, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

[Richter 08], a better code was found which has a 37%
double-error miscorrection probability.

In this paper, we propose an extremely low-cost
scheme that exploits unused spare columns to store
additional check bits which can be used to significantly
reduce the miscorrection probability for triple-errors in
SEC-DED codes or non-adjacent double-errors in SEC-
DAEC codes. The proposed scheme does not require that
any additional columns be added to the memory itself, but
rather it simply exploits unused spare columns left over
after memory repair. Implementing the proposed scheme
requires only adding a few additional XOR gates to the
check bit generation logic and providing a simple
mechanism to disregard the additional check bits
corresponding to the spare columns that become
unavailable due to their being used for repair.

The paper is organized as follows. Sec. 2 provides an
overview of linear block codes and properties of SEC-
DED and SEC-DAEC codes. Sec. 3 describes the
proposed scheme for using extra check bits to reduce
miscorrection. Sec. 4 describes the hardware
implementation for the proposed scheme. Experimental
results are shown in Sec. 5, and Sec. 6 is a conclusion.

2. Linear Block Codes

Conventional SEC-DED codes [Hamming 50], [Hsiao
70] are systematic linear block codes [Peterson 72],
[Pradhan 96]. In a (n,k) linear block code, k data bits are
encoded by n-bit codewords. The number of check bits is
r=(n-k). The (r×n) parity-check matrix (H-matrix)
completely defines the code. C is a codeword of the code
if and only if:

H·CT = 0
Where CT is the transpose of the codeword C. Let each
element in the error vector E be a 1 if the corresponding
bit is in error and a 0 if the bit is error-free, then an
erroneous message can be represented as Verror = V⊕E.
The syndrome, S, is defined as:

S = H·Verror = H·(V⊕E) = H·V⊕ H·E = H·E
If there is no error (i.e., E=0), then the syndrome is all

zero (i.e., S=0). If the syndrome is non-zero, then an
error is detected. Let hi represent the i-th column of the
H-matrix. If the i-th bit has a single error, then the error
vector, E, is all zero with only the i-th bit being a one.
The syndrome, which is equal to the product of H and E,
will be equal to hi. For an SEC Hamming code, each
column vector in the H-matrix is non-zero and distinct
[Hamming 50]. This ensures that the syndrome for any
single bit error will result in a unique syndrome. By
decoding the syndrome, it is possible to determine which
bit the error is in and flip the value of that bit to correct
the error.

For a double-bit error, the syndrome is equal to the
XOR of two columns of the H-matrix. If the XOR of any
two columns is equal to the syndrome for any single bit
error (i.e., equal to any column in the H-matrix), then the
double-bit error syndrome would alias with the single-bit
error syndrome. The correction logic would miscorrect
the double-bit error thereby missing the error. To avoid
this, it was shown in [Hsiao 70], that if every column of
the H-matrix has an odd number of 1’s and is distinct,
then the code will be SEC-DED. The reason is that the
XOR of any two columns with an odd number of 1’s will
produce a syndrome with an even number of 1’s and
hence is guaranteed to be different from any single
column. This means that the syndromes for double-bit
errors will always be different from the syndromes for
single-bit errors, so the code will always detect double-bit
errors and not miscorrect them. Hsiao codes are also
called odd-weight column codes. Note that many double-
bit errors have the same syndrome, so it is generally not
possible to correct double-bit errors since their syndromes
cannot be distinguished.

For triple-bit errors, the syndrome is formed from three
columns being XORed together. If the syndrome matches
one of columns of the H-matrix, then it will be
miscorrected as a single-bit error. The number of possible
triple-bit errors is nC3 , and the fraction of those that
match columns of the H-matrix is the miscorrection
probability for triple-errors. For most conventional SEC-
DED codes, it is in excess of 50%.

In [Dutta 07], the H-matrix is constructed using
odd-weight columns where the columns are carefully
ordered so that adjacent columns when XORed together
give a syndrome that is not equal to the syndrome for any
single-bit error or the syndrome for any other adjacent
double-bit error. The number of possible adjacent
double-bit errors is equal to n-1 and the number of single-
bit errors is n, so the combined set of 2n-1 syndromes
must all be distinct from each other. This permits
correction of both single-bit errors and adjacent double-
bit errors (i.e., SEC-DAEC). However, non-adjacent
double-bit errors may match one of the (n-1) syndromes
of the adjacent double-bit errors and hence may result in
miscorrection.

3. Proposed Scheme

The proposed scheme involves exploiting unused spare

columns in the memory to store additional check bits.
These additional check bits add extra rows to the H-
matrix and increases the dimension of the syndrome. This
makes it easier to distinguish syndromes thereby reducing
the chance of miscorrection as well as reducing the
chance of a multi-bit error’s syndrome aliasing with the
error-free all-zero syndrome and not being detected at all.

5050505050484848

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 25, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

Note that if all the spare columns are used for repair,
then for some chips, it may not be possible to store any
additional check bits. Thus, the H-matrix that is selected
should be such that if no additional check bits are
available, it still retains the SEC-DED property. The
easiest way to ensure this is to start with an SEC-DED
code, and then incrementally add the extra rows to it.

The rows are added one at a time in a greedy fashion
so that if only one spare is available after repair, then the
maximum benefit for that one row is achieved. Consider
the example in Fig. 1 which is a (7,3) SEC-DED Hsiao
code. It has 357

3 =C possible 3-bit errors, and 28 of
those will result in miscorrection. In Fig. 2, an extra
check bit is added to the H-matrix from Fig. 1. This
results in an additional row (the bottom-most one) and an
additional column (the right-most one). The last 5
columns in Fig. 2 correspond to check bits and hence
form an identity matrix. The left three columns
correspond to message bits. The bottom-most bit in the
first three columns may be set to any value so as to
minimize the miscorrection probability. In Fig. 2, the
bottom-most bit in the second column is set to 1 and the
others to 0. Now only 12 of the 35 possible triple-bit
errors will result in miscorrection.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1
0
0
0

0
1
0
0

0
0
1
0

0111
0101
0110
1011

H

Figure 1. Example of (7,3) SEC-DED Hsiao Code

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1000
0100
0010
0001
0000

0010
0111
0101
0110
1011

H

Figure 2. Adding One Row to Example in Fig. 1

Starting from an SEC-DED code, the proposed scheme

adds rows one at a time. The columns corresponding to
check bits form an identity matrix, so the degree of
freedom is in selecting the 1’s and 0’s in the row for the
columns corresponding to message bits. There are few
different strategies that can be used. If the number of
message bits is less than say 30, it is possible to do an
exhaustive search. Each possible combination of 1’s and
0’s for the row can be tried and the miscorrection
probability computed. The one that minimizes the
miscorrection probability is then selected. As the number

of message bits gets larger, however, then an exhaustive
search is no longer possible.

For larger codes, an alternative to an exhaustive search
would be to do a random search and simply keep the best
code found. The number of triple-errors is equal to nC3
which is manageable for n up to hundreds. It is feasible
to enumerate all the triple-errors and compute the exact
miscorrection probability for each candidate row. From
our experiments, this gave quite good solutions. When
comparing the results for an exhaustive search with those
of a random search, there was not a significant difference
in the results as can be seen in the experimental data in
Sec. 5.

The procedure is the same for SEC-DAEC codes. In
this case, the goal is to minimize the number of non-
adjacent double-bit errors that miscorrect. This is even
faster to evaluate since there are fewer possibilities.

When searching the codes, other criteria can be
optimized as well such as total number of XOR gates or
logic depth of the syndrome generator.

Each row is added one at a time up to the maximum
number of spare columns available in the memory. In the
best-case, if no spare columns are used for repair, then all
the extra rows will be active for error detection and
correction. In the worst-case, when all spare columns are
used for repair, then none of the extra rows will be active,
and hence only the original SEC-DED code that was used
as the starting point will remain.

4. Implementing Proposed Scheme

The proposed scheme can be implemented with very
little modification to a normal memory that uses spare
columns and is protected with an SEC-DED code. Figure
3 shows an example of the scheme assuming a single
spare column. The additional logic that is added to
support the scheme is the following:
1. An extra XOR tree in the check bit generator and

syndrome generator to support one additional check
bit.

2. An extra 2-input AND gate to disable the extra
syndrome bit when determining error detection if the
spare is used for repair.

3. An extra 2-input OR gate in the correction logic for
each data bit to disregard the extra syndrome bit if the
spare is used for repair. This is shown in Fig. 4.

Other than what is listed above, the rest of the circuitry is
already present in a conventional memory with a spare
column and SEC-DED ECC.

If the spare is used for repair, then the MUXes at the
input and output of the memory will shift the bits so that
the defective column is bypassed. The control signal for
the MUX on the far right will be a ‘1’ if the spare is used

5151515151494949

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 25, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

for repair or if the spare column itself has a defect. If this
control signal is a ‘0’, then the spare is available for
storing the extra check bit.

So if the spare is not used for repair, then the extra
check bit generated by the check bit generator is stored in
the spare column, otherwise, it is simply ignored. At the
output of the memory, the extra syndrome bit that is
generated is ignored if the spare is used for repair in
which case error detection and correction are performed
just as if that extra syndrome bit didn’t exist. However, if
the spare is not used for repair, then the extra syndrome
bit is used to help increase the chance of detecting a
multi-bit error as well as reduce the probability of
miscorrection.

If multiple spare columns are used, then there are
multiple control signals indicating whether each spare is
used for repair or available for storing check bits. The
extra control logic that was added to use one spare
column would simply be replicated for each additional
spare column.

5. Experimental Results

Experiments were performed for common data word
sizes to quantify the benefits of the proposed scheme.
Table 1 shows the results for minimizing the triple-error
miscorrection probability for SEC-DED codes. Results
are compared with the best codes from [Hsiao 70] and
[Richter 08]. For each code, the number of 2-input XORs
that is required is shown along with the raw number of
triple-bit errors that are miscorrected and the probability
of miscorrection. For the proposed method, results are
shown for the cases where one, two, and three spare
columns are available after repair. As can be seen, the
miscorrection probability is reduced dramatically at the
cost of only a small number of additional XOR gates. For
2 and 3 spare columns, the code can detect nearly all
triple-errors.

Table 2 shows the results for SEC-DAEC codes. Here
the goal is to minimize the number of non-adjacent
double-bit errors that are miscorrected. Again, as can be
seen, the miscorrection probability drops significantly.

Table 3 shows the comparison between random and
exhaustive searches for different size of codes. As can be
seen, there is very little difference in the results for the
two approaches. Note that for 16 data bits, the solution
found by random search had fewer XOR gates than the
one found by the exhaustive search. This is because the
primary criteria is minimizing the miscorrection
probability. In this case, the exhaustive search did find a
solution with a lower miscorrection probability.

Check Bit Generator

Spare
ColumnMemory

Data Bits

Syndrome Generator

Correction Logic

&
+ Error

Detected

Spare Used
for Repair

1 0

0 1

Figure 3. Block Diagram of Proposed Scheme for
One Spare Column

Correct Bit di
when S = hi = [101011]T

&

+

Spare Used
for Repair

s0 s1 s2 s3 s4 s5

XOR

di

Corrected di

Figure 4. Example of Bit-Slice of Correction Logic for
Proposed Scheme

5252525252505050

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 25, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

Table 1. Comparison of Triple-Error Miscorrection Probability for SEC-DED codes

Proposed Method [Hsiao 70] [Richter 08]

1 Spare Column 2 Spare Columns 3 Spare Columns

Data
Bits

XORs Miscorrected XORs Miscorrected XORs Miscorrected XORs Miscorrected XORs Miscorrected

16 48 1,000 (64.9%) - - 58 448 (25.3%) 70 176 (8.7%) 76 52 (2.3%)

32 96 5,452 (59.66%) 115 4, 284 (46.88%) 118 2,548 (25.8%) 129 1,200 (11.3%) 138 588 (5.1%)

64 181 33,568 (56.28%) 250 26,616 (44.63%) 265 16,176 (26.0%) 308 9,084 (14.1%) 351 7,392 (11.0%)

Table 2. Comparison of Non-Adjacent Double-Error Miscorrection Probability for SEC-DAEC codes

Proposed Method [Dutta 07] [Richter 08]

1 Spare Column 2 Spare Columns 3 Spare Columns

Data
Bits

XORs Miscorrected XORs Miscorrected XORs Miscorrected XORs Miscorrected XORs Miscorrected

16 48 118 (56.2%) - - 55 68 (29.4%) 62 33 (13.0%) 67 24 (8.7%)

32 96 379 (53.4%) 115 274 (39.0%) 117 203 (27.4%) 130 108 (13.8%) 140 72 (8.8%)

64 224 1316 (53.0%) 250 864 (34.8%) 263 688 (26.9%) 306 469 (17.8%) 353 395 (14.6%)

Table 3. Comparison of Random and Exhaustive Searches when Adding One Spare Row

Triple-Error Miscorrection Probability Non-Adjacent Double-Error Miscorrection Probability

Random Search Exhaustive Search Random Search Exhaustive Search
Data
Bits

XORs Miscorrected XORs Miscorrected XORs Miscorrected XORs Miscorrected

16 56 453 (25.5%) 58 448 (25.3%) 56 72 (31.2%) 55 68 (29.4%)

18 63 352 (13.5%) 63 352 (13.5%) 65 51 (17.0%) 65 51 (17.0%)

20 76 496 (15.1%) 76 496 (15.1%) 73 65 (17.2%) 73 65 (17.2%)

6. Conclusions

In this paper, a scheme for exploiting unused spare
columns after repair is described for improving memory
reliability. It is shown that very little additional hardware
beyond what is already present for a memory with spare
columns and SEC-DED ECC is required to use this
scheme. The experimental results show that the
miscorrection probability can be significantly reduced.

Note that if a memory has both spare rows and spare
columns, then the spare rows could be used first thereby
increasing the number of spare columns that remain for
providing additional check bits.

Acknowledgements

This research was supported in part by the National
Science Foundation under Grant No. CCR-0426608.

References

[Dutta 07] Dutta, A., and N.A. Touba, “Multiple-Bit Upset
Tolerant Memory Using a Selective Cycle Avoidance
Based SEC-DED-DEAC Code,” Prof. of VLSI Test
Symopsium, pp. 349-354, 2007.

[Hamming 50] Hamming, R.W., ”Error Correcting and Error
Detecting Codes”, Bell Sys. Tech. Journal, Vol. 29, pp.
147-160, Apr. 1950.

[Hsiao 70] Hsiao, M. Y., ”A Class of Optimal Minimum Odd-
weight-column SEC-DED codes”, IBM Journal of
Research and Development, Vol. 14, pp. 395-401, 1970.

[Kawakami 04] Kawakami, Y., et al., ”Investigation of Soft
Error Rate Including Multi-Bit Upsets in Advanced SRAM
Using Neutron Irradiation Test and 3D Mixed-mode Device
Simulation”, Proc. of IEEE Int’l Electronic Device Meeting,
pp. 945-948, Dec. 2004.

5353535353515151

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 25, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

[Kim 98] Kim, I., Y. Zorian, G. Komoriya, H. Pham, F.P.
Higgins, and J.L. Lewandowski, “Built In Self Repair for
Embedded High Density SRAM,” Proc. of International
Test Conference, pp. 1112-1119, 1998.

[Makihara 00] Makihara, A., et al., “Analysis of Single-Ion
Multiple-Bit Upset in High-Density DRAMS”, IEEE Trans.
on Nuclear Science, Vol. 47, No. 6, Dec. 2000.

[Peterson 72] Peterson, W.W., and E.J. Weldon, Error
Correcting Codes, MIT Press, Cambridge, MA, 1972

[Pradhan 96] Pradhan, D.K., Fault-Tolerant Computer System
Design, Prentice Hall, Upper Saddle River, NJ, 1996.

[Richter 08] Richter, M., K. Oberlaender, and M. Goessel, “New
Linear SEC-DED Codes with Reduced Triple Error
Miscorrection Probability”, Proc. of International On-Line
Testing Symposium, pp. 37-42, 2008.

[Satoh 00] Satoh, S., Y. Tosaka, S.A. Wender, ”Geometric
Effect of Multiple-bit Soft Errors Induced by Cosmic-ray
Neutrons on DRAMs”, Proc. of IEEE Int’l Electronic
Device Meeting, pp. 310-312, Jun. 2000.

[Stapper 92] Stapper, Charles H., Hsing-san Lee, “Synergistic
Fault-Tolerance for Memory Chips”, Proc of IEEE
Transactions on Computers, Vol. 41, No. 9, pp 1078-1087,
Sep. 1992.

[Zorian 03] Zorian, Y., and S. Skoukourian, “Embedded-
Memory Test and Repair: Infrastructure IP for SOC Yield,”
IEEE Design & Test of Computers, Vol. 20, Issue 3, pp. 58-
66, May 2003.

5454545454525252

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 25, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

