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Abstract 
 
Spare columns are often included in memories for the 

purpose of allowing for repair in the presence of defective 
cells or bit lines.  In many cases, the repair process will 
not use all spare columns.  This paper proposes an 
extremely low cost method to exploit these unused spare 
columns to improve the reliability of the memory by 
enhancing its existing error correcting code (ECC).  
Memories are generally protected with single-error-
correcting, double-error-detecting (SEC-DED) codes 
using the minimum number of check bits.  In the proposed 
method, unused spare columns are exploited to store 
additional check bits which can be used to reduce the 
miscorrection probability for triple errors in SEC-DED 
codes or non-adjacent double errors in single adjacent 
error correcting codes (SEC-DAEC) codes. 
 
1. Introduction 

 

Memories are very dense structures that are especially 
susceptible to defects.  In most cases, memories take up a 
very large percentage of a chip’s area.  In order to 
improve yield, spare rows and columns are often included 
in a memory to allow for repairing the memory [Kim 98], 
[Zorian 03].  Defective cells, bit lines, or word lines, can 
be repaired by replacing the defective rows or columns 
with the spares.  While the worst-case most defective 
memories on the tail end of the statistical curve may use 
all of the spare resources, most memories will have 
unused spare resources after the repair process.  This 
paper proposes a methodology to exploit these unused 
resources, when available, to improve the reliability of the 
memory by enhancing its existing error coding. 

Transient errors due to radiation, power supply noise, 
etc., can cause bit-flips in a memory.  To protect the data 
integrity of the memory, an error correcting code (ECC) is 
generally employed.  The most common error correcting 
code that is used is single-error-correcting, double-error-
detecting (SEC-DED) codes [Hamming 50], [Hsiao 70].  
These codes can correct single bit errors in any word of 
the memory and can detect double bit errors.  These codes 
require storing additional check bits in the memory.  For a 
memory with 32 bit data words, 7 check bits are required.  

So the memory would need 39 columns for each logical 
word plus any additional spare columns that are included 
for repair. In some cases, check bits are used along with 
spare rows and columns to get combined fault-tolerance. 
In [Stapper 92], interleaved words with redundant word 
lines and bit lines are used in addition to the check bits on 
each word. 

Some previous work has been done to enhance the 
reliability of memories without increasing the size of the 
memory.  One limitation of SEC-DED codes is that if a 
triple-bit error occurs, it may not be detected, but rather it 
may be miscorrected as if it were a single bit error 
[Hsiao 70].  The probability of miscorrection for triple bit 
errors for conventional SEC-DED codes for 32 bit data 
words is around 60% or more.  A code with r check bits 
can protect up to 2r-1-r data bits.  Most memories will not 
have exactly that number of data bits, and hence 
shortened codes must be used.  For shortened codes, there 
is a degree of freedom in selecting the set of columns in 
the parity-check matrix (H-matrix).  In [Richter 08], a 
search procedure was described for selecting the columns 
in an H-matrix for a shortened code that minimizes the 
miscorrection probability for triple bit errors.  For 
example, they found an SEC-DED code for 32 bit data 
words which has a triple error miscorrection probability 
of 47%.  This increases the reliability of the memory at no 
additional cost other than a few extra XOR gates in the 
checker. 

Another limitation of SEC-DED codes is that they can 
only detect, but not correct, double-bit errors.  Studies 
have shown that 1-5% of single event upsets (SEUs) can 
cause multiple-bit errors (MBUs) [Satoh 00], [Makihara 
00], [Kawakami 04].  Most MBUs will affect nearby 
cells.  In [Dutta 07], it was shown that by carefully 
selecting and ordering the columns in the H-matrix for an 
SEC-DED code, it is possible to correct all adjacent 
double-bit errors in addition to correcting all single bit 
errors thereby creating an SEC-DAEC code.  Since the 
most likely double-bit errors will be adjacent, this is very 
useful.  The limitation of SEC-DAEC codes is that they 
may not detect all non-adjacent double-bit errors.  The 
SEC-DAEC code reported in [Dutta 07] for 32 bit data 
words has a 51% double-bit miscorrection probability.  In 
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[Richter 08], a better code was found which has a 37% 
double-error miscorrection probability. 

In this paper, we propose an extremely low-cost 
scheme that exploits unused spare columns to store 
additional check bits which can be used to significantly 
reduce the miscorrection probability for triple-errors in 
SEC-DED codes or non-adjacent double-errors in SEC-
DAEC codes.  The proposed scheme does not require that 
any additional columns be added to the memory itself, but 
rather it simply exploits unused spare columns left over 
after memory repair.  Implementing the proposed scheme 
requires only adding a few additional XOR gates to the 
check bit generation logic and providing a simple 
mechanism to disregard the additional check bits 
corresponding to the spare columns that become 
unavailable due to their being used for repair. 

The paper is organized as follows.  Sec. 2 provides an 
overview of linear block codes and properties of SEC-
DED and SEC-DAEC codes.  Sec. 3 describes the 
proposed scheme for using extra check bits to reduce 
miscorrection.  Sec. 4 describes the hardware 
implementation for the proposed scheme.  Experimental 
results are shown in Sec. 5, and Sec. 6 is a conclusion. 

 
2. Linear Block Codes 

 

Conventional SEC-DED codes [Hamming 50], [Hsiao 
70] are systematic linear block codes [Peterson 72], 
[Pradhan 96].  In a (n,k) linear block code, k data bits are 
encoded by n-bit codewords.  The number of check bits is 
r=(n-k).  The (r×n) parity-check matrix (H-matrix) 
completely defines the code.  C is a codeword of the code 
if and only if: 

H·CT = 0 
Where CT is the transpose of the codeword C.  Let each 
element in the error vector E be a 1 if the corresponding 
bit is in error and a 0 if the bit is error-free, then an 
erroneous message can be represented as Verror = V⊕E.  
The syndrome, S, is defined as: 

S = H·Verror = H·(V⊕E) = H·V⊕ H·E = H·E 
If there is no error (i.e., E=0), then the syndrome is all 

zero (i.e., S=0).  If the syndrome is non-zero, then an 
error is detected.  Let hi represent the i-th column of the 
H-matrix.  If the i-th bit has a single error, then the error 
vector, E, is all zero with only the i-th bit being a one.  
The syndrome, which is equal to the product of H and E, 
will be equal to hi.  For an SEC Hamming code, each 
column vector in the H-matrix is non-zero and distinct 
[Hamming 50].   This ensures that the syndrome for any 
single bit error will result in a unique syndrome.  By 
decoding the syndrome, it is possible to determine which 
bit the error is in and flip the value of that bit to correct 
the error. 

For a double-bit error, the syndrome is equal to the 
XOR of two columns of the H-matrix.  If the XOR of any 
two columns is equal to the syndrome for any single bit 
error (i.e., equal to any column in the H-matrix), then the 
double-bit error syndrome would alias with the single-bit 
error syndrome.  The correction logic would miscorrect 
the double-bit error thereby missing the error.  To avoid 
this, it was shown in [Hsiao 70], that if every column of 
the H-matrix has an odd number of 1’s and is distinct, 
then the code will be SEC-DED.  The reason is that the 
XOR of any two columns with an odd number of 1’s will 
produce a syndrome with an even number of 1’s and 
hence is guaranteed to be different from any single 
column.  This means that the syndromes for double-bit 
errors will always be different from the syndromes for 
single-bit errors, so the code will always detect double-bit 
errors and not miscorrect them.  Hsiao codes are also 
called odd-weight column codes.  Note that many double-
bit errors have the same syndrome, so it is generally not 
possible to correct double-bit errors since their syndromes 
cannot be distinguished. 

For triple-bit errors, the syndrome is formed from three 
columns being XORed together.  If the syndrome matches 
one of columns of the H-matrix, then it will be 
miscorrected as a single-bit error.  The number of possible 
triple-bit errors is nC3 , and the fraction of those that 
match columns of the H-matrix is the miscorrection 
probability for triple-errors.  For most conventional SEC-
DED codes, it is in excess of 50%. 

In [Dutta 07], the H-matrix is constructed using 
odd-weight columns where the columns are carefully 
ordered so that adjacent columns when XORed together 
give a syndrome that is not equal to the syndrome for any 
single-bit error or the syndrome for any other adjacent 
double-bit error.  The number of possible adjacent 
double-bit errors is equal to n-1 and the number of single-
bit errors is n, so the combined set of 2n-1 syndromes 
must all be distinct from each other.  This permits 
correction of both single-bit errors and adjacent double-
bit errors (i.e., SEC-DAEC).  However, non-adjacent 
double-bit errors may match one of the (n-1) syndromes 
of the adjacent double-bit errors and hence may result in 
miscorrection.   

 
3. Proposed Scheme 

 
The proposed scheme involves exploiting unused spare 

columns in the memory to store additional check bits.  
These additional check bits add extra rows to the H-
matrix and increases the dimension of the syndrome.  This 
makes it easier to distinguish syndromes thereby reducing 
the chance of miscorrection as well as reducing the 
chance of a multi-bit error’s syndrome aliasing with the 
error-free all-zero syndrome and not being detected at all. 

5050505050484848

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 25, 2009 at 18:26 from IEEE Xplore.  Restrictions apply. 



Note that if all the spare columns are used for repair, 
then for some chips, it may not be possible to store any 
additional check bits.  Thus, the H-matrix that is selected 
should be such that if no additional check bits are 
available, it still retains the SEC-DED property.  The 
easiest way to ensure this is to start with an SEC-DED 
code, and then incrementally add the extra rows to it.  

The rows are added one at a time in a greedy fashion 
so that if only one spare is available after repair, then the 
maximum benefit for that one row is achieved.  Consider 
the example in Fig. 1 which is a (7,3) SEC-DED Hsiao 
code.  It has 357

3 =C  possible 3-bit errors, and 28 of 
those will result in miscorrection.  In Fig. 2, an extra 
check bit is added to the H-matrix from Fig. 1.  This 
results in an additional row (the bottom-most one) and an 
additional column (the right-most one).  The last 5 
columns in Fig. 2 correspond to check bits and hence 
form an identity matrix.  The left three columns 
correspond to message bits.  The bottom-most bit in the 
first three columns may be set to any value so as to 
minimize the miscorrection probability.  In Fig. 2, the 
bottom-most bit in the second column is set to 1 and the 
others to 0.  Now only 12 of the 35 possible triple-bit 
errors will result in miscorrection. 
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Figure 1. Example of (7,3) SEC-DED Hsiao Code 
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Figure 2. Adding One Row to Example in Fig. 1 
 
Starting from an SEC-DED code, the proposed scheme 

adds rows one at a time.  The columns corresponding to 
check bits form an identity matrix, so the degree of 
freedom is in selecting the 1’s and 0’s in the row for the 
columns corresponding to message bits.  There are few 
different strategies that can be used.  If the number of 
message bits is less than say 30, it is possible to do an 
exhaustive search.  Each possible combination of 1’s and 
0’s for the row can be tried and the miscorrection 
probability computed.  The one that minimizes the 
miscorrection probability is then selected.  As the number 

of message bits gets larger, however, then an exhaustive 
search is no longer possible. 

For larger codes, an alternative to an exhaustive search 
would be to do a random search and simply keep the best 
code found.  The number of triple-errors is equal to nC3  
which is manageable for n up to hundreds.  It is feasible 
to enumerate all the triple-errors and compute the exact 
miscorrection probability for each candidate row.  From 
our experiments, this gave quite good solutions.  When 
comparing the results for an exhaustive search with those 
of a random search, there was not a significant difference 
in the results as can be seen in the experimental data in 
Sec. 5. 

The procedure is the same for SEC-DAEC codes.  In 
this case, the goal is to minimize the number of non-
adjacent double-bit errors that miscorrect.  This is even 
faster to evaluate since there are fewer possibilities. 

When searching the codes, other criteria can be 
optimized as well such as total number of XOR gates or 
logic depth of the syndrome generator. 

Each row is added one at a time up to the maximum 
number of spare columns available in the memory.  In the 
best-case, if no spare columns are used for repair, then all 
the extra rows will be active for error detection and 
correction.  In the worst-case, when all spare columns are 
used for repair, then none of the extra rows will be active, 
and hence only the original SEC-DED code that was used 
as the starting point will remain. 

 
4. Implementing Proposed Scheme 

 

The proposed scheme can be implemented with very 
little modification to a normal memory that uses spare 
columns and is protected with an SEC-DED code.  Figure 
3 shows an example of the scheme assuming a single 
spare column.  The additional logic that is added to 
support the scheme is the following: 
1. An extra XOR tree in the check bit generator and 

syndrome generator to support one additional check 
bit. 

2. An extra 2-input AND gate to disable the extra 
syndrome bit when determining error detection if the 
spare is used for repair. 

3. An extra 2-input OR gate in the correction logic for 
each data bit to disregard the extra syndrome bit if the 
spare is used for repair.  This is shown in Fig. 4. 

Other than what is listed above, the rest of the circuitry is 
already present in a conventional memory with a spare 
column and SEC-DED ECC. 

If the spare is used for repair, then the MUXes at the 
input and output of the memory will shift the bits so that 
the defective column is bypassed.  The control signal for 
the MUX on the far right will be a ‘1’ if the spare is used 
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for repair or if the spare column itself has a defect.  If this 
control signal is a ‘0’, then the spare is available for 
storing the extra check bit.  

So if the spare is not used for repair, then the extra 
check bit generated by the check bit generator is stored in 
the spare column, otherwise, it is simply ignored.  At the 
output of the memory, the extra syndrome bit that is 
generated is ignored if the spare is used for repair in 
which case error detection and correction are performed 
just as if that extra syndrome bit didn’t exist.  However, if 
the spare is not used for repair, then the extra syndrome 
bit is used to help increase the chance of detecting a 
multi-bit error as well as reduce the probability of 
miscorrection. 

If multiple spare columns are used, then there are 
multiple control signals indicating whether each spare is 
used for repair or available for storing check bits.  The 
extra control logic that was added to use one spare 
column would simply be replicated for each additional 
spare column. 

 
 

5. Experimental Results 
 

Experiments were performed for common data word 
sizes to quantify the benefits of the proposed scheme.  
Table 1 shows the results for minimizing the triple-error 
miscorrection probability for SEC-DED codes.  Results 
are compared with the best codes from [Hsiao 70] and 
[Richter 08].  For each code, the number of 2-input XORs 
that is required is shown along with the raw number of 
triple-bit errors that are miscorrected and the probability 
of miscorrection.  For the proposed method, results are 
shown for the cases where one, two, and three spare 
columns are available after repair.  As can be seen, the 
miscorrection probability is reduced dramatically at the 
cost of only a small number of additional XOR gates.  For 
2 and 3 spare columns, the code can detect nearly all 
triple-errors. 

Table 2 shows the results for SEC-DAEC codes.  Here 
the goal is to minimize the number of non-adjacent 
double-bit errors that are miscorrected.  Again, as can be 
seen, the miscorrection probability drops significantly. 

Table 3 shows the comparison between random and 
exhaustive searches for different size of codes. As can be 
seen, there is very little difference in the results for the 
two approaches.   Note that for 16 data bits, the solution 
found by random search had fewer XOR gates than the 
one found by the exhaustive search.  This is because the 
primary criteria is minimizing the miscorrection 
probability.  In this case, the exhaustive search did find a 
solution with a lower miscorrection probability. 
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Correction Logic
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Figure 3. Block Diagram of Proposed Scheme for  
One Spare Column 
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Figure 4. Example of Bit-Slice of Correction Logic for 
Proposed Scheme 
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Table 1.  Comparison of Triple-Error Miscorrection Probability for SEC-DED codes 
 

Proposed Method [Hsiao 70] [Richter 08] 

1 Spare Column 2 Spare Columns 3 Spare Columns 

Data 
Bits 

XORs Miscorrected XORs Miscorrected XORs Miscorrected XORs Miscorrected XORs Miscorrected

16 48 1,000 (64.9%) - - 58 448 (25.3%) 70 176 (8.7%) 76 52 (2.3%) 

32 96 5,452 (59.66%) 115 4, 284 (46.88%) 118 2,548 (25.8%) 129 1,200 (11.3%) 138 588 (5.1%) 

64 181 33,568 (56.28%) 250 26,616 (44.63%) 265 16,176 (26.0%) 308 9,084 (14.1%) 351 7,392 (11.0%)
 
 

Table 2.  Comparison of Non-Adjacent Double-Error Miscorrection Probability for SEC-DAEC codes 
 

Proposed Method [Dutta 07] [Richter 08] 

1 Spare Column 2 Spare Columns 3 Spare Columns 

Data 
Bits 

XORs Miscorrected XORs Miscorrected XORs Miscorrected XORs Miscorrected XORs Miscorrected

16 48 118 (56.2%) - - 55 68 (29.4%) 62 33 (13.0%) 67 24 (8.7%) 

32 96 379 (53.4%) 115 274 (39.0%) 117 203 (27.4%) 130 108 (13.8%) 140 72 (8.8%) 

64 224 1316 (53.0%) 250 864 (34.8%) 263 688 (26.9%) 306 469 (17.8%) 353 395 (14.6%)
 
 

Table 3.  Comparison of Random and Exhaustive Searches when Adding One Spare Row 
 

Triple-Error Miscorrection Probability Non-Adjacent Double-Error Miscorrection Probability

Random Search Exhaustive Search Random Search Exhaustive Search 
Data  
Bits 

XORs Miscorrected XORs Miscorrected XORs Miscorrected XORs Miscorrected 

16 56 453 (25.5%) 58 448 (25.3%) 56 72 (31.2%) 55 68 (29.4%) 

18 63 352 (13.5%) 63 352 (13.5%) 65 51 (17.0%) 65 51 (17.0%) 

20 76 496 (15.1%) 76 496 (15.1%) 73 65 (17.2%) 73 65 (17.2%) 

 
6. Conclusions 

 

In this paper, a scheme for exploiting unused spare 
columns after repair is described for improving memory 
reliability.  It is shown that very little additional hardware 
beyond what is already present for a memory with spare 
columns and SEC-DED ECC is required to use this 
scheme.  The experimental results show that the 
miscorrection probability can be significantly reduced. 

Note that if a memory has both spare rows and spare 
columns, then the spare rows could be used first thereby 
increasing the number of spare columns that remain for 
providing additional check bits. 
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